156 resultados para Aerobic incubation at 4°C, gas chromatography
Resumo:
This work discusses sample preparation processes for gas chromatography (GC) based on the technique of extraction through membrane permeation (MPE). The MPE technique may be easily coupled to GC via a relatively simple device, which is a module that holds the membrane and is directly connected to the GC column. The possibility of operational errors due to sample handling is substantially reduced in an MPE-GC system because the sample preparation and the chemical analysis are accomplished as a one-step process. The MPE technique is of relatively wide application as it can be used for aqueous samples, solid samples and gaseous samples. Depending on the type of sample the extraction is performed with the membrane in direct contact with the sample or in contact with its headspace. The MPE-GC technique is very useful in trace analysis, due to the time-dependent enrichment of the analyte. A typical application of MPE-GC is the analysis of VOCs present in water that may be accomplished with detection limits at the low ppb (mugL-1) level.
Resumo:
The developments in stationary phase synthesis and capillary column technology, have opened new perspectives in analysis of high molecular mass compounds (³600 daltons) and thermolabile organic compounds by High Temperature High Resolution Gas Chromatography (HT-HRGC). HT-HRGC is a new analytical borderline and its application to the analysis of high molecular mass compounds is still in its infancy. The apolar and medium polar gum phases can now be operated at temperatures up to 400-480ºC, being used for the analysis of n-alcanes up to C-100, lipids, oligosaccharides, industrial resins, polyglycerols, cyclodextrins, porphyrins, etc. This technique should play a leading role as a powerful tool, for many different analysis types, in multidisciplinary fields of Science.
Resumo:
The analysis of water samples containing volatile organic compounds has become an important task in analytical chemistry. Gas chromatography has been widely used for the analysis of volatile organic compounds in water. The headspace analysis shows as a principal characteristic the possibility of determination of the volatile components in drinking water. Benzene, Toluene and Xylene (BTX) are important compounds usually present in drinking water, from contamination by petroleum derivatives. Since they are toxic compounds even when present in low concentration levels, their determination is important in order to define the quality of the water. The sampling technique using headspace, coupled with gas chromatography as the separation method, showed to be suitable for BTX analysis in several samples at the mug/L (ppb) level.
Resumo:
This review presents an updated overview of the trace element speciation by gas chromatography coupled with atomic absorption spectrometry.
Resumo:
The main purpose of this work was the qualitative study of organic compounds in landfill leachate. The samples were collected from a sanitary landfill located at Gravataí, a southern Brazilian city, that receive both, industrial and domestic refuse. The samples were submitted to solid phase extraction (SPE) with XAD-4 resin as the stationary phase. The instrumental analysis was performed by Gas Chromatography with a Mass Spectrometry Detector (GC/MSD). The compounds achieved in the SPE extracts were tentatively identified by the GC/MS library. It was found several oxygen and nitrogen compounds like carboxylic acids, ketones, amines and amides. Sulfur compounds and phthalate esters are also identified.
Resumo:
A headspace solid-phase microextraction (HS-SPME) for the determination of 1,4 dioxane in cosmetics by gas chromatography is described. A manual SPME holder with 85 µm polyacrylate coating is utilized. The method is determined to have good resolution, satisfactory linerity (correlation coefficient r=0.997 for 0.20-10.00 mg Kg-1 range), a relative standard deviation of 6.3% and a detection limit of 5.00 µg Kg-1. Some cosmectic products were analyzed.
Resumo:
The fractionation column with SiO2 of the hexane extract of Sebastiania argutidens (Euphorbiaceae) yielded fractions containing hydrocarbons, carboxylic acids, sterols and pentacyclic triterpenes. Besides, one fraction showed the presence of several methyl esters, including four uncommon long chain palmitate esthers as minor components. The characterization of these chemical constituents have been done by High Resolution Gas Chromatography (HRGC) and HRGC coupled to Mass Spectrometry (GC/MS). Campesterol, stigmasterol, b-sitosterol, glutin-5-en-3-ol were identified by HRGC co-injection with standards.
Resumo:
The adsorption of triadimenol (1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol) on soil samples with varying contents of organic matter was studied. The adsorption was described by means of the Freundlich's isoterm. An increase in the capacity of adsorption was observed as the content of organic carbon in the matrix increased. That effect was observed when removing the organic matter from the soil, when adding a urban waste compost to the soil sample as well as to the soil sample without organic matter, and also after leaving proportions of urban waste compost incubated in these matrices for a period of 120 days. The results show that the adsorption of the triadimenol in the soil is dependent of its content of organic carbon.
Resumo:
The quantitative chemical analysis of the Brazilian sugar cane spirit distilled from glass column packaged with copper, stainless steel, aluminum sponge, or porcelain balls is described. The main chemical compounds determined by gas chromatography coupled with flame ionization (FID) and flame photometric (FPD) detectors and liquid chromatography coupled with diode array detector are aldehydes, ketones, carboxylic acids, alcohols, esters and dimethylsulfite (DMS). The spirits produced either in columns filled with copper or aluminum pot still exhibits the lowest DMS contents but the higher sulfate and methanol contents, whereas spirits produced in stainless steel or porcelain showed higher DMS concentration and lower teors of sulfate ion and methanol. These observations are coherent with DMS oxidation to sulfate, with methanol as by product, in the presence of either copper or aluminum.
Resumo:
In the present work a polyurethane polymer derived from castor oil was used as stationary phase for capillary gas chromatography. The polymer was obtained by reaction of hydroxylated compound and isocynate (NCO), forming urethane. Columns of 7 m x 0,25 mm were then coated with this stationary phase (film thickness of 0,25 µm) using static coating method. The Grob test was also performed. Samples of essential oil of the Aniba duckei Korstermans was then analysed in POLYH4-MD capillary column in order to evaluate its chromatographic perfomance. The linalool was found to be the major component and has been used as compound of departure for many important syntheses. Results show that the experimental columns give higher resolution and can be employed for analysis of essentials oils.
Resumo:
The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC), Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals). The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS). Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.
Resumo:
Rutheniumporphyrins, especially with several nitro groups in b-positions, were used in the cyclohexane oxidation in the presence of iodosylbenzene, hydrogen peroxide and sodium hypochlorite as oxygen donors, under mild conditions. The beta-polynitrated complexes were able to promote the catalytic cyclohexane oxidation. They show an exceptionally high catalytic efficiency and resistance to attack by strong oxidizing agents. The cyclohexane oxidation was monitored by gas chromatography and the results showed that the beta-polynitrated rutheniumporphyrins are better catalysts when compared to other complexes not beta-polynitrated. In all cases, the 2-phenylsubstituted complexes were more efficient than 4-phenylsubstituted complexes. The importance of the ortho effect to oxidation was shown.
Resumo:
Quantitative GC-FID was evaluated for analysis of methylated copaiba oils, using trans-(-)-caryophyllene or methyl copalate as external standards. Analytical curves showed good linearity and reproducibility in terms of correlation coefficients (0.9992 and 0.996, respectively) and relative standard deviation (< 3%). Quantification of sesquiterpenes and diterpenic acids were performed with each standard, separately. When compared with the integrator response normalization, the standardization was statistically similar for the case of methyl copalate, but the response of trans-(-)-caryophyllene was statistically (P < 0.05) different. This method showed to be suitable for classification and quality control of commercial samples of the oils.
Resumo:
The parameters which affect the degradation and stabilization of diclofenac in suspensions of nanocapsules and of the corresponding spray-dried powders were investigated. Formulations were subjected to 14 months of storage at room temperature. In addition, a study of the degradation of diclofenac was carried out by exposing the formulations or mixtures (drug and adjuvants) to UVC wavelengths. The presence of Epikuron 170® in a concentration higher than 3.06 mg/mL stabilizes the drug, avoiding its reduction or degradation. The degradation products were isolated, analyzed by gas chromatography-mass spectrometry, and identified as 2-(2',6'-dichlorophenyl)aminobenzyl alcohol and N-(2',6'-dichlorophenyl)anthranilylaldehyde.
Resumo:
The aim of the present work was to test the combination of non-esterified fatty acid (NEFA) isolation using fumed silicon dioxide with capillary gas-chromatography (C-GC) with splitless injection for the analysis of NEFAs in human plasma. Injection volume, solvent re-condensation and split purge flow-rate were the parameters evaluated for the analysis of fatty acid methyl esters by C-GC. The use of a solvent re-condensation technique, associated with 1.0 µL injection and a split purge flow rate of 80 mL/min resulted in satisfactory analysis of NEFAs. Fourteen fatty acids were identified in plasma samples, ranging from 2.03 to 184.0 µmol/L. The combination of both techniques proved useful for routine analyses of plasma NEFAs.