88 resultados para Additive combinatorics
Resumo:
This work reports results of studies on the electrochemical and structural properties of a Ti/Zr-based metal hydride alloy covered by Ni and LaNi4,7Sn0,3 powder additives by ball milling. The effect of this treatment is investigated for the activation time, hydrogen storage capacity and equilibrium pressure, cycling stability and the hydration/dehydration kinetics. Charge and discharge cycles show a significant decrease of the activation time due to an increase of the active area caused by the milling treatment, independent of the additive. However, other results have evidenced little effect of the milling surface treatment on the charge storage capacity, hydrogen equilibrium pressure, and hydration/dehydration kinetics, for both the Ni and LaNi4,7Sn0,3 covered materials.
Resumo:
The specific consumption and carbon monoxide (CO) and nitrogen oxide (NO) emissions from gasolines formulated with ethanol, methyl tert-butyl ether (MTBE) and tert-amyl ethyl ether (TAEE) were evaluated in the rich, stoichiometric and lean-burn regions during the operation of an Otto-cycle engine. The use of ethanol as an additive presented high specific consumption, while gasoline formulated with TAEE showed low specific consumption with the engine operating under lean-burn conditions. The ethers evaluated here presented a low percentage of CO in the rich-burn region when compared with ethanol.
Resumo:
It is investigated in the present contribution the oscillatory co-electrodeposition of CuSn on a polycrystalline gold surface in the presence of Triton X-100 surfactant and citric acid as additive, in acidic media. The experiments were conducted under potentiostatic control and the system dynamics characterized in terms of the morphology and stability of the current oscillations. Besides modulations in the frequency and amplitude of the current oscillations, several patterned states were observed, including relaxation-like and mixed mode oscillations. The oscillations were found to be very robust and some time series presented regular motions up to about two hours.
Resumo:
Hydrotalcite-like compounds having Mg partially replaced by Cu or Mn were prepared and used as precursors for two mixed oxides (Cu-OM50 and Mn-OM50) that were evaluated for SOx removal in the presence of O2, NO and CO. Under SO2/O2 reaction system, SOx removal was slightly higher over Cu-OM50. The addition of CO and NO to the feed markedly hindered the SO2 oxidation over Cu-OM50 while no significant effect was observed for Mn-OM50. For the regeneration step, the use of propane instead of H2 reduces regeneration capacity, mainly for Cu-OM50. Mn-OM50 was less affected by the feed composition, suggesting that it was a promising additive for SOx removal.
Resumo:
Daily records of hospital admissions due to cardiorespiratory diseases and levels of PM10, SO2, CO, NO, NO2, and O3 were collected from 1999-2004 to evaluate the relationship between air pollution and morbidity in Lisbon. Generalised additive Poisson regression models were adopted, controlling for temperature, humidity, and both short and long-term seasonality. Significant positive associations, lagged by 1 or 2 days, were found between markers of traffic-related pollution (CO and NO2) and cardiocirculatory diseases in all age groups. Increased childhood emergency admissions for respiratory illness were significantly correlated with the 1-day lagged SO2 levels coming from industrial activities.
Resumo:
A biofuel was prepared from acid aqueous fraction (pH = 2) of bio-oil produced by fast pyrolysis (Bioware Technology) of lignocellulosic biomass (sugar cane residue) and tested in blends (2, 5, 10 e 20% v/v) with gasoline type C (common) marketed in Brazil. The specification tests made in the Refinery President Getúlio Vargas (PETROBRAS) showed increasing in the octane number (MON) and antiknock index (AKI) with reduction in the residue generation during the combustion. The physicochemical characteristics of the biofuel were similar that combustible alcohol allowing its use as gasoline additive.
Resumo:
This paper presents a study on the production of silica gel in hydrothermal process using residual rice husk ash. Measurements of the chemical composition, X-ray diffraction, infrared spectroscopy, particle size distribution, and pozzolanic activity were carried out in order to characterize the obtained material, and the optimal silica gel was selected for use as a mineral additive in cement pastes. The compressive strengths were determined for cement pastes containing silica gel (0.0, 2.5 or 5% by mass) in different times. The results indicate that the mixtures containing silica gel showed improved mechanical behavior over all time periods evaluated.
Resumo:
Composite solid propellants prepared with HTPB prepolymer - Hydroxyl Terminated Polybutadiene, AP - Ammonium Perchlorate as oxidizer and aluminum particles as an additive metal, have characteristics of high electrical resistivity. The loading process of the polymer matrix did not obtain homogeneity, resulting in clusters, mainly of metal particles. The effect of clustering in the composite was studied and observed experimentally, and this effect was one of the factors explaining the phenomenon of electrical charging of the composite. This electrical potential, when discharged abruptly, can generate an electric spark with sufficient energy for sustained ignition of a solid rocket motor.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
Lipase from Burkholderia cepacia was immobilized in a silica matrix and dried in high pressure carbon dioxide media (aerogel). The protic ionic liquid (PIL) was used in the immobilization process by encapsulation. The objective of this work was to evaluate the influence of the drying technique using supercritical carbon dioxide in biocatalysts obtained through the sol-gel technique by evaluating temperature and pressure and, after selecting the best drying conditions, to investigate the application of the technique for the biocatalyst using ionic liquid as an additive in the immobilization process. The results for immobilized biocatalysts showed that the best conditions of pressure and temperature were 100 bar and 25 ºC, respectively, giving a total activity recovery yield of 37.27% without PIL (EN) and 44.23% with PIL (ENLI). The operational stability of the biocatalysts showed a half-life of 11.4 h for ENLI and 6 h for EN. Therefore, solvent extraction using supercritical CO2, besides shortening drying time, offers little resistance to the immobilization of lipases, since their macropores provide ample room for their molecules. The use of the ionic liquid as an additive in the process studied for the immobilization of enzymes produced attractive yields for immobilization and therefore has potential for industrial applications in the hydrolysis of vegetable oils.
Resumo:
The objective of this work was the immobilization of the enzyme Candida antarctica lipase B (CAL B) using the sol-gel method of immobilization and three different initiators of the polymerization reaction: one acid (HCl), one basic (NH4OH) and the other nucleophilic (HBr). Tetraethylorthosilicate was used as the silica precursor. The influence of the additive PEG 1500 on immobilization was assessed. The efficiency of the process was evaluated considering the esterification activity of the xerogels. The immobilization process provided enhanced thermal stability, storage and operational aspects relative to the free enzyme. Storage temperature proved one of the main variables to be considered in the process, with the xerogels stored under refrigeration showing better results in terms of residual activity (nearly 200 days with ≥ 90% residual activity of basic and nucleophilic xerogels) when compared with storage at ambient temperature (nearly 40 days). The results demonstrated the possibility of reuse of derivatives and a greater number of cycles (nine), considering a residual activity of 50%.
Resumo:
Field experiments were conducted in the 1995-96 soybean (Glycine max) growing season to evaluate the effects of cultural practices and host genetic resistance on the intensity of soybean stem canker, caused by Diaporthe phaseolorum f.sp. meridionalis (Dpm). Experiments were conducted in a commercial field severely infected in the previous (1994-95) season. In one study, minimum tillage (MT) and no-tillage (NT) cropping systems were investigated for their effects on disease development and on plant yields in cvs. FT-Cristalina (susceptible) and FT-Seriema (moderately resistant). Another study evaluated the effects of plant densities (8, 15, 21 and 36 plants/m) on disease development in cvs. FT-Cristalina, FT-101 (moderately resistant) and FT-104 (resistant). Disease incidence and severity were consistently lower in NT than in MT, and plant yields were increased by 23% and 14% in the NT system for the susceptible and moderately resistant cultivars, respectively, compared to the yields in the MT system. The Gompertz and Logistic models described well the disease progress curves in all situations. For both susceptible and moderately resistant cultivars, disease severity increased proportionately to the increase in plant densities. At the end of the season, 100% of the plants of cv. FT-Cristalina were infected by Dpm, at all plant densities. Disease levels on cv. FT-101 were intermediate while only very low disease levels were recorded on cv. FT-104. There was a consistent negative correlation between stem canker severity and yield. Some practices demonstrated potential for direct application in disease control, and could be combined considering their additive effects.
Resumo:
The study was done to identify the most active fungitoxic component of cinnamon bark (Cinnamomum zeylanicum) oil that can be used as a marker for standardization of cinnamon extract or oil based natural preservative of stored seeds. Aspergillus flavus and A. ruber were used as test fungi. The hexane extracted crude oil and the hydro-distilled essential oil from cinnamon bark had complete growth inhibition concentration (CGIC) of 300 and 100 µl/l, respectively. Both oils produced three fractions on preparative thin layer silica-gel chromatography plates. The fraction-2 of either oil was the largest and most active, with CGIC of 200 µl/l, but the fungitoxicity was also retained in the other two fractions. The fraction-1 and 3 of the crude oil reduced growth of both the fungal species by 65%, and those of distilled oil by 45% at 200 µl/l. The CGIC of these fractions from both the sources was above 500 µl/l. The gas chromatography and mass spectrometry (GC-MS) of the fraction-2 of the hexane extract revealed that it contained 61% cinnamaldehyde, 29% cinnamic acid, and two minor unidentified compounds in the proportion of 4% and 6%. The GC-MS of the fraction-2 of the distilled oil revealed that it contained 99.1% cinnamaldehyde and 0.9% of an unidentified compound. The CGIC of synthetic cinnamaldehyde was 300 µl/l and that of cinnamic acid above 500 µl/l. The 1:1 mixture of cinnamaldehyde and cinnamic acid had CGIC of 500 µl/l. The data revealed that cinnamaldehyde was the major fungitoxic component of hexane extract and the distilled essential oil of cinnamon bark, while other components have additive or synergistic effects on total fungitoxicity. It is suggested that the natural seed preservative based on cinnamon oil can be standardized against cinnamaldehyde.
Resumo:
Based on a polygenic system of a diploid species, without epistasis, and a population in Hardy-Weinberg equilibrium, without inbreeding and under linkage equilibrium, it can be shown that: (1) the narrow sense heritability at half-sib family level is equal to the square of the correlation coefficient between family mean and the additive genetic value of its common parent; (2) the narrow sense heritability at full-sib family level is equal to the square of the correlation coefficient between family mean and the mean of the additive genetic values of its parents; (3) the narrow sense heritability at Sn family level is exactly equal to the square of the correlation coefficient between family mean and the additive genetic value of its parent only in absence of dominance or when allele frequencies are equal; and (4) the broad sense heritability at full-sib or Sn family level can be used to analyze selection efficiency, since the progeny genotypic mean is, in general, a good indicator of parents, or Sn-1 plant superiority with respect to the frequency of favorable genes.
Resumo:
We conducted a study of the processes associated to NH3 emission in naturally ventilated dairy cattle facilities, having described factors that regulate NH3 emission, as well as methodologies for measuring these emissions at these facilities. Appropriate techniques to mitigate NH3 emission in facilities located in regions with warm climates were also identified. The most effective mitigation techniques with simple implementation include strategies associated to: (i) installation design and flooring, which lead to reduced emissions, (ii) excreta pre-excretion, namely the use of diets with optimized crude protein content and increased milk production at farm level; and (iii) excreta post-excretion, particularly by changing the conditions of environmental monitoring within the premises, practice introduction or additive application in the management of excreta deposited on floors.