55 resultados para 320305 Medical Biochemistry - Proteins and Peptides
Resumo:
The cercarial glycocalyx and schistosomulum surface contains a number of glycoproteins which are expressed in very variable amounts within a parasite population. Tunicamycin inhibits glycoprotein synthesis of schistosomula if the parasites are incubated for 24hr with the drug (10µg ml[raised to the power of -1]). An unexpected increase in lectin binding to the parasite surface was observed but no other changes were detected. Schistosomula treated in this way did not develop in the host past the lung stage. Ultraviolet irradiation (400µW min cm[raised to the power of-2]) also inhibited glycoprotein synthesis. Synthesis of other proteins, and in particular heat shock proteins, were also inhibited. Sera from mice (NIH strain) infected with irradiated cercariae contained antibodies which bound to normal schistosomula with lower affinity than to irradiated parasites. This is evidence that irradiation modifies the surface and secreted glycoproteins of schistosomula, so they are processed in a different way to normal glycoproteins by the host's immune system. The effects of irradiation on heat shock protein synthesis may allow the parasite to release a variety of proteins and glycoproteins in abnormal conformations. This may explain the enhanced immunogenicity of irradiated cercariae.
Resumo:
Protein extracts obtained from male and female shistosomes were incubated with a gender-specific gene, F-10, transcribed only in adult females and encoding a major egg-shell protein. The protein/DNA interaction was measured using the band shift, DNase-I-footprinting and UV cross-linking techniques. The results showed a clear band shift when a 302 bp restriction fragment containing the 3'end of the gene was incubated with either female or male proteins. This fragment also contained a putative steroid hormone regulatory element (HRE). In contrast, only the male proteins produced a shift with the 495 bp fragment corresponding to the middle region of the gene. DNase I footprinting showed that proteins from males and females interacted with the F-10 gene by binding to multiple adjacent sites along the DNA, thus generatingrelatively long protected fragments of approximately 100 bp. This result suggested that the adjacent binding of several moles of proteins occured at the 5'end of the gene. UV cross-linking between schistosome proteins and a 21 bp synthetic oligonucleotide the F-10 HRE, evidence proteins having MWS of 30,45 and 65 kDNA. These proteins are presumably involved in the regulation of transcription of the F-10 gene.
Resumo:
Mayaro virus was grown in BHK-21 cells and purified by centrifugation in a potassium-tartrate gradient (5-50%). The electron microscopy analyses of the purified virus showed an homogeneous population of enveloped particles with 69 ñ 2.3 nm in diameter. Three structural virus proteins were identified and designated pl, p2 and p3. Their average molecular weight were p1, 54 KDa; p2, 50 KDa and p3, 34 KDa. In Mayaro virus infected. Aedes albopictus cells and in BHK-21 infected cells we detected six viral proteins, in wich three of them are the structural virus proteins and the other three were products from processing of precursors of viral proteins, whose molecular weights are 62 KDa, 64 KDa and 110 KDa. The 34 KDa protein was the first viral protein sinthesized at 5 hours post-infection in both cell lines studied.
Resumo:
Molecular cloning of components of protective antigenic preparations have suggested that related parasite fatty acid binding proteins could form the basis of the well documented protective, immune cross reactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. We have now confirmed the cross protective potential of parasite fatty acid binding proteins and suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni of veterinary and human importance respectively.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Eosinophils are prominent inflammatory cells in asthma and other allergic disorders, as well as in helminthic parasite infections. Recently, eosinophils have been reported to synthesize and store a range of regulatory proteins within their secretory granules (eokines). Eokines comprise a group of cytokines, chemokines, and growth factors which are elaborated by eosinophils. These proteins, and the messages which encode them, appear to be identical to those produced by lymphocytes and other tissues. Interestingly, immunoreactivity to many of these eokines has been found to co-localize to the eosinophil´s secretory granules. In this review, we have discussed the repertoire of 18 eokines so far identified in eosinophils, and focused on four of these, namely, interleukin-2 (IL-2), IL-4, granulocyte/macrophage colony-stimulating factor (GM-CSF), and RANTES. These four eokines co-localize to the crystalloid granules in eosinophils, as shown in studies using subcellular fractionation and immunogold labeling in electron microscopy. During stimulation by physiological triggers, for example, with serum-coated particles, eosinophils release these mediators into the surrounding supernatant. In addition, eokines are likely to be synthesized within eosinophils rather than taken up by endocytosis, as show in detection of mRNA for each of these proteins using in situ hybridization, RT-PCR, and in the case of RANTES, in situ RT-PCR. Eokines synthesis and release from eosinophils challenges the commonly held notion that these cells act downstream of key elements in immune system, and indicate that they may instead belong to the afferent arm of immunity.
Resumo:
Lipids and glycogen in fat body as well as the modifications in the wet weight of this organ were evaluated in an unfed insect, Dipetalogaster maximus, on day 5 after adult ecdysis (time 0) and during a 30-day period after ingestion of blood meal. Total lipids, high density lipophorin (HDLp), carbohydrates, total proteins and uric acid were determined in the hemolymph during the same period. Fat body wet weight was maximum on day 10 post-feeding and represented on day 30 only 42% of the maximum weight. Lipids stored in the fat body increased up to day 15 reaching 24% of the total weight of tissue. Glycogen was maximum on day 20, representing approximately 3% of the fat body weight. HDLp represented at all times between 17-24% of the total proteins, whose levels ranged between 35 and 47 mg/ml. Uric acid showed at 20, 25 and 30 days similar levels and significantly higher than the ones shown at days 10 and 15. Hemolymphatic lipids fluctuated during starvation between 3-4.4 mg/ml and carbohydrates showed a maximum on day 15 after a blood meal, decreasing up to 0.26 mg/ml on day 25. The above results suggest that during physiological events such as starvation, the availability of nutrients is affected, involving principally the fat body reserves
Resumo:
Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5.
Resumo:
In this article, Médicos Sin Fronteras (MSF) Spain faces the challenge of selecting, piecing together, and conveying in the clearest possible way, the main lessons learnt over the course of the last seven years in the world of medical care for Chagas disease. More than two thousand children under the age of 14 have been treated; the majority of whom come from rural Latin American areas with difficult access. It is based on these lessons learnt, through mistakes and successes, that MSF advocates that medical care for patients with Chagas disease be a reality, in a manner which is inclusive (not exclusive), integrated (with medical, psychological, social, and educational components), and in which the patient is actively followed. This must be a multi-disease approach with permanent quality controls in place based on primary health care (PHC). Rapid diagnostic tests and new medications should be available, as well as therapeutic plans and patient management (including side effects) with standardised flows for medical care for patients within PHC in relation to secondary and tertiary level, inclusive of epidemiological surveillance systems.
Resumo:
Recently, we described the improved immunogenicity of new malaria vaccine candidates based on the expression of fusion proteins containing immunodominant epitopes of merozoites and Salmonella enterica serovar Typhimurium flagellin (FliC) protein as an innate immune agonist. Here, we tested whether a similar strategy, based on an immunodominant B-cell epitope from malaria sporozoites, could also generate immunogenic fusion polypeptides. A recombinant His6-tagged FliC protein containing the C-terminal repeat regions of the VK210 variant of Plasmodium vivax circumsporozoite (CS) protein was constructed. This recombinant protein was successfully expressed in Escherichia coli as soluble protein and was purified by affinity to Ni-agarose beads followed by ion exchange chromatography. A monoclonal antibody specific for the CS protein of P. vivax sporozoites (VK210) was able to recognise the purified protein. C57BL/6 mice subcutaneously immunised with the recombinant fusion protein in the absence of any conventional adjuvant developed protein-specific systemic antibody responses. However, in mice genetically deficient in expression of TLR5, this immune response was extremely low. These results extend our previous observations concerning the immunogenicity of these recombinant fusion proteins and provide evidence that the main mechanism responsible for this immune activation involves interactions with TLR5, which has not previously been demonstrated for any recombinant FliC fusion protein.