51 resultados para 010401 Applied Statistics
Resumo:
The genotypic variability in molybdenum (Mo) accumulation in common bean seeds has been demonstrated in cases in which soil is the main Mo source, but this variability is yet unknown when Mo is foliar-applied. Therefore, seed Mo concentrations (SMoCc) and seed Mo contents (SMoCt) of 12 genotypes were determined in four experiments in the Zona da Mata, Minas Gerais, Brazil, in which plants were sprayed with 600 g ha-1 Mo. For comparison, two additional experiments without external Mo were conducted. Without Mo application, the average SMoCc was undetectable or 2.83 µg g-1, without significant differences among genotypes. On average, with Mo applications, SMoCc ranged from 14.7 to 25.0 µg g-1 and SMoCt, from 3.94 to 6.84 µg. 'Majestoso' was among the genotypes with the highest SMoCc in the four experiments. However, the large-seeded 'Jalo MG-65' and 'Carnaval' generally had higher SMoCt than the small-seeded 'Majestoso'. 'Ouro Negro' and especially 'Valente' were among the genotypes with the lowest SMoCc and SMoCt. The values of these variables were 61 and 90 %, respectively, higher for 'Majestoso' than those for 'Valente'. Our results suggest that common bean genotypes differ in their capacity to accumulate foliar-applied Mo in the seeds. Mo-rich seeds of large-seeded genotypes or of small-seeded of small-seeded genotypes with good capacity to accumulate Mo in seeds can be produced with relatively less Mo fertilizer.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).
Resumo:
The objective of this work was to evaluate a simple, semi‑automated methodology for mapping cropland areas in the state of Mato Grosso, Brazil. A Fourier transform was applied over a time series of vegetation index products from the moderate resolution imaging spectroradiometer (Modis) sensor. This procedure allows for the evaluation of the amplitude of the periodic changes in vegetation response through time and the identification of areas with strong seasonal variation related to crop production. Annual cropland masks from 2006 to 2009 were generated and municipal cropland areas were estimated through remote sensing. We observed good agreement with official statistics on planted area, especially for municipalities with more than 10% of cropland cover (R² = 0.89), but poor agreement in municipalities with less than 5% crop cover (R² = 0.41). The assessed methodology can be used for annual cropland mapping over large production areas in Brazil.
Resumo:
Annonaceae is an ancient family of plants including approximately 50 genera growing worldwide in a quite restricted area with specific agroclimatic requirements. Only few species of this family has been cultivated and exploited commercially and most of them belonging to the genus Annona such as A. muricata, A. squamosa, the hybrid A. cherimola x A. squamosa and specially Annona cherimola: the cherimoya, commercially cultivated in Spain, Chile, California, Florida, México, Australia, Ecuador, Peru, Brazil, New Zealand and several countries in South and Central America. The cherimoya shows a high degree of heterozygosis, and to obtain homogeneous and productive orchards it is necessary to avoid the propagation by seeds of this species. Additionally, the traditional methods of vegetative propagation were inefficient and inadequate, due to the low morphogenetic potential of this species, and the low rooting rate. The in vitro tissue culture methods of micropropagation can be applied successfully to cherimoya and other Annona sp to overcome these problems. Most of the protocols of micropropagation and regeneration were developed using the cultivar Fino de Jete, which is the major cultivar in Spain. First it is developed the method to micropropagate the juvenile material of cherimoya (ENCINA et al., 1994), and later it was optimized a protocol to micropropagate adult cherimoya genotypes selected by outstanding agronomical traits (PADILLA and ENCINA, 2004) and further it was improved the process through micrografting (PADILLA and ENCINA, 2011).At the present time we are involved in inducing and obtaining new elite genotypes, as part of a breeding program for the cherimoya and other Annonas, using and optimizing different methodologies in vitro: a) Adventitious organogenesis and regeneration from cellular cultures (ENCINA, 2004), b) Ploidy manipulation of the cherimoya, to obtain haploid, tetraploid and triploid plants (seedless), c) Genetic transformation, for the genes introduction to control the postharvest processes and the genes introduction to provide resistance to pathogen and insects and d) Micropropagation and regeneration of other wild Annona or related Annonaceae species such as: Annona senegalensis, A. scleroderma, A. montana, A. reticulata, A. glabra, A. diversifolia and Rollinia sp.