68 resultados para 010101 Algebra and Number Theory
Resumo:
The inheritance of resistance to powdery mildew in the pea cultivar MK-10 and some histological aspects of infection were assessed. For the inheritance study, F1, F2, backcrosses and F3 generations of MK-10 crossed with two susceptible populations were evaluated. Histological evaluations included percentage of germinated conidia, percentage of conidia that formed appresoria, percentage of conidia that established colonies, and number of haustoria per colony. Segregation ratios obtained in the resistance inheritance study were compared by Chi-square (ײ) test and the histological data were analyzed by Tukey's test at 5% probability. It was concluded that resistance of MK-10 to powdery mildew is due to a pair of recessive alleles since it is expressed in the pre-penetration stage and completed by post-penetration localized cellular death, characteristic of the presence of the pair of recessive alleles er1er1.
Resumo:
The daily weight gain, behavioral activities (grazing, ruminating and water consumption) and the number of rumen protozoa, pH, NH3, and the osmolarity of rumen fluid was evaluated for four groups of six calves HPB/Zebu submitted to daily intake of 15, 30, 60 and 90g of NaCl during 135 days (9th Jan. to 24th May 2008).Throughout the experimental period the calves were in perfect health condition and did not show any signs suggestive of chronic sodium poisoning. There was no significant difference in average daily gain of the calves as the intake of NaCl increased. No significant behavioral changes were observed in the activities of grazing and rumination. However, there was a noticeable change in the frequency of water consumption in the calves that ingested 90g/d of NaCl; they went more often to the trough and drank more water than the group that ingested only 15g sodium chloride/d. The osmolarity of ruminal liquid was higher in the group of calves fed 90g of NaCl/d. The pH, NH3 concentration and number of rumen protozoa was within the normal range.
Resumo:
The pathogens of the reproductive system in the male can penetrate and establish by ascending route, from to the prepuce to the urethra, accessory glands, epididymis and testicles. The aim of this paper is determine the distribution and number of cells involved in the immune response in prepuce and pelvic urethra of rams, without apparent clinical alterations in testicle, epididymis and prepuce. The distribution of some of the cells involved in the immune response at the level of the prepuce and the pelvic urethra was quantified in four one-year-old rams seronegative for B. ovis and A. seminis and without apparent lesions in the testicles, the epididymis, and the prepuce. At the moment of slaughter, samples were taken from the preputial fornix and the pelvic urethra and placed in 10% formalin and under freezing conditions. CD4, CD8, WC1, CD45RO, CD14 and CD1b cells were demonstrated by immunohistochemistry, and immunoglobulin-containing cells (ICC) of the IgA, IgG and IgM classes were demonstrated by immunofluorescence. The labeled cells present in the mucosa of both organs were counted with an image analyzer. The total number of cells was compared between both tissues and differentially between the epithelium and the connective tissue of the mucosa. Significant differences were found in the total number of CD4, CD45RO, and WC1 lymphocytes, in CD14 macrophages, and CD1b dendritic cells, with mean values being greater in the fornix than in the urethra (p<0.05) in all cases. Only dendritic cells were found in the prepuce. No differences were found in the number of CD8 lymphocytes between both organs. The ratio between each cell type in the connective and the intraepithelial tissues and between organs was 10/1 for CD4 in the fornix (p<0.05), against 7/1 in the urethra (p<0.05), while CD8 had a 1/1 distribution in both mucosae. The WC1 ratio was 5/1 in both mucosae (p<0.05). CD45RO labeling was 19/1 in the prepuce (p<0.05) and 1/1 in the urethra. IgA-containing cells did not show differences in the total number of cells in both tissues. In the urethra, no IgG-containing cells were observed and IgM-containing cells were scarce; in contrast, both cell types were present in the prepuce, in amounts greater than in the urethra (p<0.05). IgA-, IgG-, and IgM-containing cells were located in both organs in the mucosal connective tissue. The presence of antigen-presenting cells, macrophages, and dendritic cells, as well as of lymphocytes CD4, CD8 TCR γδ (WC1), IgA-, IgG and IgM positive cells, and CD45RO cells suggests that both mucosae may behave as inductive and effector sites for the mucosal immune response.
Resumo:
To investigate the effects of trifluralin, chlorimuron and clomazone on morphology and assimilate partitioning during soybean development, plants were grown in a greenhouse and sampled at 14-day intervals. Clomazone reduced stem and leaf dry matter accumulation at 14 days after emergence (DAE), while trifluralin and chlorimuron reduced plant part dry matter accumulation up to 28 DAE. The number of leaves, plant height, mass and number of pods and seeds, and the shoot/root ratio were not influenced by the herbicides. Roots, stems and leaves were the preferred sinks up to the R2 growth stage, while pods and developing seeds became the preferred sinks later. This order was not altered by the herbicides.
Resumo:
Two field experiments were conducted at the experimental farm of the National Research Centre at Shalakan, Kalubia Governorate, Egypt, during 2006 and 2007 seasons, to study the effect of three pre-emergence herbicides, prometryn [at the rate of 0.75, 1.5 and 2.25 kg ha-1], oxadiargyl [at the rate of 240, 480 and 720 g ha-1] and butralin [at the rate of 1.20, 2.40 and 3.36 kg ha-1], two hand hoeing treatments and a nonweeded check, on weed infestation, nodulation, growth, yield and yield attributes of soybean plants. Two hand hoeing treatments resulted in the highest weed depression expressed as the lowest fresh and dry weights of broadleaved, grassy and total weeds. The reduction percentage in weed dry matter compared to the nonweeded treatment was 98.3, 92.64 and 96.9% in broadleaved, grassy and total weeds, respectively. Application of the three herbicides at higher or recommended doses significantly reduced fresh and dry weight of the weeds compared to the nonweeded treatment. The results indicated that all the three herbicides at rates higher than the recommended markedly decreased the number, fresh and dry weight of nodules as well as root, shoot and total dry weight plant-1, while application of two hand hoeing treatments significantly increased these traits. Two hand hoeing treatments and pre-emergence herbicides at the recommended rates markedly increased soybean yield and its attributes. Two hand hoeing treatments gave the highest values of number of pods per plant-1, weight of pods per plant-1 and number of seeds per plant-1 by 140.7, 150.0 and 59.8%, respectively, compared to the nonweeded treatment. On the other hand, oxadiargyl at the recommended rate (480 g ha-1) was the best treatment for promoting seed yield (g plant-1), seed yield (kg ha-1) and biological yield (g plant-1) compared to the nonweeded treatment by 87.3, 85.0 and 88.2%, respectively. Prometryn at the rate of 1.50 kg ha-1, followed by two hand hoeing treatments, produced the highest shoot and seed protein percentage as well as seed oil percentage, compared to the other weed control treatments.
Resumo:
The interference imposed the by weeds on corn decreases practically all vegetative characteristics. As consequence, the green ear and grain yield are also reduced. Losses due to the fall armyworm (Spodoptera frugiperda) attack can reduce corn grain yield up to 34%. In general, weed and insect control issues are addressed separately in research papers. Nevertheless, interaction between weeds and insects may exist. This study aimed to evaluate green ear and corn grain yield response to weed and fall armyworm control. A completely randomized block design with split-plots and five replicates was adopted. Corn cultivar AG 1051 was grown under weedy conditions or with control by hand hoeings performed at 20 and 40 days after planting. Fall armyworm control (applied to subplots) was performed with sprays of water (control), deltamethrin (5g active ingredient ha-1); neem oil, at 0.5% (diluted in water), and neem leaf extract at 5%. Each product was sprayed three times, at seven-day intervals, starting at the 7th day after planting, using 150 L ha-1 of the tank solution. Dry mass of the above-ground part, internode diameter, leaf length, leaf width, leaf area, green ear yield and grain yield of corn were reduced due to the lack of weed control. Fall armyworm control in the weeded plots did not influence green ear yield and grain yield, except green mass of marketable, husked ears, which was reduced when the caterpillar was not controlled. Without weed control, neem extracts and deltamethrin sprays provided highest yields of number and total weight of green ears with husks, number and weight of marketable ears with husks and number of marketable ears without husks. The best results for husked ear mass and for grain yield were obtained with neem extract and deltamethrin, respectively.
Resumo:
Many studies have demonstrated the beneficial influence of nitrogen doses on corn dry grain yield and green ear yield. Due to a growing concern with environmental degradation, many agricultural practices, adopted in the past, are being reexamined. With regard to weed control, strategies that employ mechanical control, including intercrops, are being the object of renewed interest. The purpose of this study was to evaluate the effects of the application of nitrogen doses (0, 40, 80, and 120 kg N ha-1; as ammonium sulfate) and weed control on the growth, green ear yield, and grain yield of the AG 1051 corn cultivar. A randomized block experimental design with split-plots and nine replications was adopted. In addition to nitrogen rates, the AG 1051 cultivar was submitted to the following treatments, applied to subplots: no weeding, two hoeings (at 20 and 40 days after sowing), and intercropping with gliricídia (Gliricidia sepium). Gliricidia was sowed at corn planting, between the corn rows, using two seedlings per pit, in pits spaced 0.30 m apart. Gliricidia did not provide weed control, and gave plant growth, green ear yield and grain yield values similar to the no weeding treatment. However, regarding the number of mature ears got, intercropping with gliricidia did not differ from the two-hoeing treatment. Weed control did not have an effect on plant height and number of marketable, husked green ears, with the application of 120 kg N ha-1; indicating that nitrogen improved the corn's competitive ability. The two-hoeing treatment provided the best means for total green ears weight, number of marketable husked ears, both unhusked and husked marketable ear weight, grain yield and its components than the other treatments. Nitrogen application increased corn growth, green ear yield, and grain yield, as well as weed green biomass, but reduced the stand and growth of gliricidia.
Resumo:
Glyphosate is an herbicide that inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs) (EC 2.5.1.19). EPSPs is the sixth enzyme of the shikimate pathway, by which plants synthesize the aromatic amino acids phenylalanine, tyrosine, and tryptophan and many compounds used in secondary metabolism pathways. About fifteen years ago it was hypothesized that it was unlikely weeds would evolve resistance to this herbicide because of the limited degree of glyphosate metabolism observed in plants, the low resistance level attained to EPSPs gene overexpression, and because of the lower fitness in plants with an altered EPSPs enzyme. However, today 20 weed species have been described with glyphosate resistant biotypes that are found in all five continents of the world and exploit several different resistant mechanisms. The survival and adaptation of these glyphosate resistant weeds are related toresistance mechanisms that occur in plants selected through the intense selection pressure from repeated and exclusive use of glyphosate as the only control measure. In this paper the physiological, biochemical, and genetic basis of glyphosate resistance mechanisms in weed species are reviewed and a novel and innovative theory that integrates all the mechanisms of non-target site glyphosate resistance in plants is presented.
Resumo:
Intercropping systems involving corn are often subjected to stress caused by weeds, which usually result in 30-70 per cent yield loss when no control practice is applied. This study aimed to assess the composition of weed communities due to soil coverage, at neighboring areas submitted to distinct soil managements. The soil was collected at field and the study was conducted under a greenhouse in three steps: (1) weeds composition and importance within each treatment; (2) comparison between treatments (distinct crop and intercropping managements); (3) infestation in the area as a whole. The weed composition in the short term is influenced by the management of the area, but this shift requires some more years to be reflected at the soil seed bank. Some weed species occur in high densities and even this way they may not be the most serious weed species present in a given field. Just a few species are adapted to a given system of management in a level enough to be a troublesome weed. Areas differed in relation to weed infestation as a function of management adopted and number of years the new management was applied.
Resumo:
The objective of this study was to evaluate the competitiveness of two cultivars of upland rice drought-tolerant, cultured in coexistence with weed S. verticillata, under conditions of absence and presence of water stress. The experiment was conducted in a greenhouse at the Experimental Station of the Universidade Federal de Tocantins, Gurupi-TO Campus. The experimental design was completely randomized in a factorial 2 x 2 x 4 with four replications. The treatments consisted of two rice cultivars under two water conditions and four densities. At 57 days after emergence, were evaluated in rice cultivars and weed S. verticillata leaf area, dry weight of roots and shoots and total concentration and depth of roots. Was also evaluated in rice cultivars, plant height and number of tillers. Water stress caused a reduction in leaf area, the concentration of roots and vegetative components of dry matter (APDM, and MSR MST) of rice cultivars and Jatoba Catetão and weed S. verticillata. The competition established by the presence of the weed provided reduction of all vegetative components (MSPA, and MSR MST) of cultivars and Jatoba Catetão. It also decreased the number of tillers, the concentration of roots and leaf area. At the highest level of weed competition with rice cultivars, a greater decrease in vegetative components and leaf area of culture, regardless of water conditions.
Resumo:
This trial aimed to evaluate the effect of sequential applications of different plant regulators over growth and flower rachis emission of 'Meyer' zoysiagrass (Zoysia japonica). The study was conducted on 15-month old green turfgrass under a randomized complete block design with four replications. The following plant regulator and doses were tested: trinexapac-ethyl (113+113, 226+113, 226+226, 452+113, 452+226, 452+452, 678+339 e 904+452 g a.i./ha-1), prohexadione-calcium (100+100 e 200+200 g a.i. ha-1) and bispyribac-sodium (40+40 e 60+60 g a.i. ha-1), as well as an untreated control. The turfgrass was mowed again at 3.0 cm aboveground and the second plant regulator was applied when 'Meyer' zoysiagrass was between 5.0 and 6.0 cm high. The effect of the treatments was visually rated for visual injury, plant height, height and number of flower rachis, and total dry mass production of clippings. Only bispyribac-sodium had visual symptoms of injury on 'Meyer' zoysiagrass, and no intoxication was observed at 28 days after the second application (DAAB). The sequential applications of trinexapac-ethyl, prohexadione-calcium and bispyribac-sodium reduced by more than 80% the total clipping dry mass produced by 'Meyer' zoysiagrass. All the plant regulators tested also showed promising results in reducing the height and emission of rachis, especially when trinexapac-ethyl was applied at the doses 452+452, 678+339 and 904+452 g a.i. ha-1. 'Meyer' zoysiagrass turfgrass can be handled with the sequential application of a plant regulator, which reduces the need for mowing over a period up to 110 days after the application of the second plant regulator, and it also avoids deleterious visual effects over turfgrass.
Resumo:
Herbicides and plant growth regulators are often used in sugarcane management. However, the use of non-selective pesticides can cause adverse effects on the efficiency of beneficial insects in integrated pest management. Within this context, this study aimed to evaluate the effect of such products on the immature stages of the parasitoid Trichogramma galloi. Eggs of Diatraea saccharalis containing the parasitoid at the egg-larva stage and at the prepupal and pupal stages were immersed in test solutions of the following pesticides (maximum recommended doses for sugarcane): herbicides clomazone and diuron + hexazinone, and plant growth regulators trinexapac-ethyl and sulfometuron-methyl. The biological properties evaluated were emergence (F1 and F2) and number of eggs parasitized by T. galloi (F1). The products were classified according to percentage of reduction in emergence and parasitism: harmless (<30%), slightly harmful (30-79%), moderately harmful (80-99%) and harmful (>99%). The pesticides evaluated were considered to be harmless or slightly harmful to immature T. galloi and, thus, their use should be preferred for preserving this parasitoid species in sugarcane management programs.
Resumo:
ABSTRACT Growth regulators can be used to further retard or inhibit vegetative growth. In this sense, the objective of this study was to determine the effects of age and number of trinexapac-ethyl applications on the growth and yield of sugarcane. The experiment was in a randomized complete block design with four replications. The treatments were in a 3 x 2 + 2 factorial arrangement, where factor A corresponded to the application times of the plant growth regulator (120, 200 and 240 days after bud burst (DAB) of sugarcane) and factor B to the number of applications (one or two applications). In addition, two controls (one with three applications and another application without the regulator) were added. The application of trinexapac-ethyl decreased the number and the distance between buds, height, root volume and sugarcane yield. The sequential application (2 or 3 times) induced an increase in stem diameter and three applications of the product increased the number of plant tillers. The use of growth regulators applied at 240 DAB has reduced plant height, however without changing the number of buds. It can be concluded that trinexapac-ethyl changes sugarcane growth and yield, regardless of season and number of applications.
Resumo:
A review of our recent work on the cromosomal evolution of the Drosophila repleta species group is presented. Most studies have focused on the buzzatii species complex, a monophyletic set of 12 species which inhabit the deserts of South America and the West Indies. A statistical analysis of the length and breakpoint distribution of the 86 paracentric inversions observed in this complex has shown that inversion length is a selected trait. Rare inversions are usually small while evolutionary successful inversions, fixed and polymorphic, are predominantly of medium size. There is also a negative correlation between length and number of inversions per species. Finally, the distribution of inversion breakpoints along chromosome 2 is non-random, with chromosomal regions which accumulate up to 8 breakpoints (putative "hot spots"). Comparative gene mapping has also been used to investigate the molecular organization and evolution of chromosomes. Using in situ hybridization, 26 genes have been precisely located on the salivary gland chromosomes of D. repleta and D. buzzatii; another nine have been tentatively identified. The results are fully consistent with the currently accepted chromosomal homologies between D. repleta and D. melanogaster, and no evidence for reciprocal translocations or pericentric inversions has been found. The comparison of the gene map of D. repleta chromosome 2 with that of the homologous chromosome 3R of D. melanogaster shows an extensive reorganization via paracentric inversions and allows to estimate an evolution rate of ~1 inversion fixed per million years for this chromosome
Resumo:
The present study was designed to assess the effects of bromocriptine, a dopamine agonist, on pituitary wet weight, number of immunoreactive prolactin cells and serum prolactin concentrations in estradiol-treated rats. Ovariectomized Wistar rats were injected subcutaneously with sunflower oil vehicle or estradiol valerate (50 or 300 µg rat-1 week-1) for 2, 4 or 10 weeks. Bromocriptine (0.2 or 0.6 mg rat-1 day-1) was injected daily during the last 5 or 12 days of estrogen treatment. Data were compared with those obtained for intact control rats. Administration of both doses of estrogen increased serum prolactin levels. No difference in the number of prolactin cells in rats treated with 50 µg estradiol valerate was observed compared to intact adult animals. In contrast, rats treated with 300 µg estradiol valerate showed a significant increase in the number of prolactin cells (P<0.05). Therefore, the increase in serum prolactin levels observed in rats treated with 50 µg estradiol valerate, in the absence of morphological changes in the pituitary cells, suggests a "functional" estrogen-induced hyperprolactinemia. Bromocriptine decreased prolactin levels in all estrogen-treated rats. The administration of this drug to rats previously treated with 300 µg estradiol valerate also resulted in a significant decrease in pituitary weight and number of prolactin cells when compared to the group treated with estradiol alone. The general antiprolactinemic and antiproliferative pituitary effects of bromocriptine treatment reported here validate the experimental model of estrogen-induced hyperprolactinemic rats