452 resultados para óxidos de colesterol
Resumo:
Phytochemical investigation of the bark of Cenostigma macrophyllum (Leguminosae-Caesapinioideae) resulted in the isolation and identification of valoneic acid dilactone, ellagic acid, lupeol, alkyl ferulate, four free sterols (cholesterol, campesterol, stigmasterol and sitosterol), a mixture of sitosteryl ester derivatives of fatty acids, sitosterol-3-O-beta-D-glucopyranoside, stigmasterol-3-O-beta-D-glucopyranoside and saturated and unsaturated fatty acids. The structures of the isolated compounds were identified by ¹H and 13C NMR spectral analysis and comparison with literature data. The mixtures of 3-beta-hydroxysterols and fatty acids were analysed by GC/MS.
Resumo:
A chromatographic method was developed for cholesterol determination in feed for ruminants using response surface methodology. Among the five approaches of sample preparation methods tested, the saponification of the sample without heating presented less interference in the gas chromatography. The method presented a relative standard deviation (RSD) of 4.3%, recoveries between 84 and 87% and detection limit of 0.001 mg of cholesterol per g of feed.
Resumo:
In this work, the perovskite-type oxides LaNiO3, LaMnO3, La0,7Sr0,3NiO3 and La0,7Sr0,3MnO3 were prepared by co-precipitation and tested in the NO reduction with CO at 400 and 500 ºC for 10 h. The catalysts were characterized by X-ray diffraction, temperature programmed reduction with hydrogen, nitrogen adsorption and chemical analysis. The nonstoichiometric oxygen was quantified by temperature programmed reduction, and the catalytic tests showed that the La0,7Sr0,3MnO3 catalyst presented the higher performance for the reduction reaction of NO with CO. The partial substitution of lanthanum by strontium increased the NO conversion and the N2 yield.
Resumo:
A laboratory experiment that enables the professor to introduce the problematic of sustainable development in pharmaceutical chemistry to undergraduate students is proposed, using a simple synthetic procedure. Cholesteryl acetate is prepared by the esterification of cholesterol using Montmorillonite K10 as heterogeneous catalyst. Cholesterol and cholesteryl acetate are characterized by spectroscopic (¹H RMN, 13C RMN, FTIR) and thermal analysis techniques. The thermal methods are used to introduce the concepts of polymorphism and the nature of mesophases.
Resumo:
The oxygen reduction reaction was studied in alkaline media using manganese oxides obtained from spent batteries as electrocatalysts. Three processes were used to recover manganese oxides from spent batteries. The particles obtained were in the range from 8 to 11 nm. The electrochemical experiments indicated a good electrocatalytic activity toward oxygen reduction using the different samples and showing approximately a direct transference of 4 electrons during the process. Even though all the processes were efficient, the best result was observed for the prepared sample using reactants of low cost.
Resumo:
An UV-Ozone reactor was developed with an ignition tube extracted into HID mercury lamp used to irradiation on zinc oxide (ZnO) and fluorinated tin oxide (FTO) films for PLEDs devices. Different exposures times were used. In contact angle measurements revealed better results for ZnO and FTO by 15 and 5 min, respectively. In Diffuse Reflectance Infra-red Fourier Transformed (DRIFT) spectroscopy allowed the observation of water, hydrocarbon and carbon dioxide adsorbed on the untreated TCO surfaces. After the UV-Ozone treatment the contaminants were significantly reduced or eliminated and the PLEDs devices decreased threshold voltages in comparison with respectively untreated TCOs.
Resumo:
A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and maghemite (γ-Fe2O3), in heterogeneous catalysis.
Resumo:
In this work we report a systematic study on the influence of the chemical nature of silver precursors on the formation of glass-ceramics from oxide glasses. Thermal, structural and optical properties were analyzed as a function of the glass composition. Controlled crystallization was achieved by thermal treatment of the samples above glass transition. The influence of time of treatment on both nanoparticle growth and optical properties of the samples was studied by transmission electron microscopy and UV-Vis spectroscopy, respectively. Results showed that only glasses containing AgCl and AgNO3 led to glass-ceramics growth after thermal treatment.
Resumo:
This work describes three C8-stationary phases for high performance liquid chromatography based on silica metallized with ZrO2, TiO2 or Al2O3 layers, having poly(methyloctylsiloxane) immobilized onto their surfaces. The stationary phases were characterized using XRF, XAS, FTIR, SEM and elemental analysis to determine the physical characteristics of the oxide and polysiloxane layers formed on the surfaces and chromatographically to evaluate the separation parameters. The results show the changes on the silica surface and allowed proposing a structure for the oxide layer, being observed tetrahedral and octahedral structures, what is completely new in the literature. The formation of a homogeneous layer of metallic oxide (TiO2 and ZrO2) was observed on the silica. The C8-titanized and C8-aluminized stationary phases presented good chromatographic performances, with good values of asymmetry and efficiency. All stationary phase presented few loss of the polymeric layer after the HPLC, indicating that this layer is well attached on the metalized support.
Resumo:
Cobalt or iron oxides supported or not on zeolite Hbeta were prepared and evaluated in the reduction reaction of NO by CO in presence of O2, SO2 or H2O. XRD results evidenced the Hbeta structure and the formation of Co3O4 and Fe2O3. TPR-H2 analysis showed complete reduction of cobalt oxide at lower temperatures than for iron oxide. The catalysts are quite active and the activity depends on the reaction temperature. The highest conversions rates were observed for pure iron oxide, which can be a relatively low cost catalyst for reduction of NO by CO, with high selectivity towards the N2 formation.
Resumo:
Elephant grass ash (EGA) was produced at 700 °C, with two different treatments: hot water (EGAhw) or acid solution (EGAas). The efficiency of the treatments at removing the potassium oxide was evaluated with the aim of using the EGA as a pozzolanic mineral addition for cement-based composites. Characterizations were carried out by X-ray fluorescence (XRF), X-ray diffraction (XRD), pozzolanic activity by electric conductivity and application of the kinetic-diffusive model. The analysis evidenced that the chemical treatment was more efficient for removing potassium oxide. The pozzolanic activity test and the kinetic parameters for the EGAas indicated that this ash is suitable for cement-based composites.
Resumo:
Despite the fact that Brazil is the world’s largest niobium mineral producer, governmental interest in exploration of the mineral leading to more valuable derived materials is scarce, which has reduced the country’s knowledge about a wider range of technological applications for this metal. Niobium pentoxide stands out due its remarkable electronic, structural, and textural properties. Therefore, this review aims to highlight its main properties, synthetic methods, and applications, with a particular focus on photocatalysts based on Nb2O5. This review will highlight the potential of Nb2O5 and encourage the study of niobium and its compounds in technological and environmental applications.
Resumo:
New techniques for treating wastewater, particularly the removal or degradation of organic pollutants and heavy metals, among other pollutants, have been extensively studied. The use of nanostructured iron oxides as adsorbent and photocatalyst for the removal of these contaminants has proved a promising approach, not only because of their high treatment efficiency, but also for their cost-effectiveness, having the flexibility for in situ and ex situ applications. In this review, we briefly introduced the most used kinds of iron oxide nanoparticles, some synthesis techniques for iron oxide nanostructure formation, their potential benefits in environmental clean-up, and their recent advances and applications in wastewater treatment. These advances range from the direct applications of synthesized nanoparticles as adsorbents for removing toxic contaminants or as catalysts to oxidize and break down noxious contaminants (including bacteria and viruses) in wastewater, to integrating nanoparticles into conventional treatment technologies, such as composite photocatalytic filters (membranes, sand and ceramic) that combine separation technology with photocatalytic activity. Finally, the impact of nanoparticles on the environment and human health is briefly discussed.
Resumo:
Foram avaliados os resultados tardios da colocação de cálculos biliares humanos, de colesterol, na cavidade peritoneal de ratos. Constituíram-se cinco grupos: cinco ratos foram apenas laparotomizados com manuseio da cavidade; cinco foram laparotomizados e receberam um ponto com fio monofilamentar cinco zeros no sulco paracólico direito e mesentério; dez receberam cálculos que foram deixados livres na cavidade peritoneal; em dez, os clculos foram fixados no sulco paracólico direito e, finalmente, dez tiveram clculos fixados no mesentério. Os animais foram mortos após cinco meses de pós-operatório quando se observou a cavidade abdominal e foi coletado material para estudo histopatológico. Concluiu-se que os cálculos não foram absorvidos, desenvolveram uma reação peritoneal do tipo corpo estranho com formação de plastrão e foram envolvidos por tecido fibroso e células inflamatórias.
Resumo:
A produção de camarões no Brasil é expressiva com condições propícias para expansão. Apesar de ser bem apreciado em termos culinários e ser uma fonte rica de proteínas, o camarão é apontado como um alimento de alto conteúdo de colesterol. Considerando que o nível de colesterol sangüíneo humano é dependente não só do teor de colesterol, mas também da quantidade de gordura e do tipo de ácidos graxos na dieta, um estudo integrado destes três constituintes foi realizado em camarão rosa (Penaeus brasiliensis), tamanho médio proveniente de São Paulo. A extração e a determinação do teor de lipídios totais foram realizadas de acordo com método de Folch, Less & Stanley. O método para determinação de colesterol por cromatografia líquida de alta eficiência, com coluna C18 e detector por conjunto de diodos, foi estabelecido no nosso laboratório. Este método mostrou-se eficiente, rápido e simples. A composição de ácidos graxos foi obtida por cromatografia gasosa com coluna capilar de sílica fundida com DB-WAX. Os teores de colesterol e lipídios totais para camarão rosa médio foram 127 ± 9mg/100 g e 1,0 ± 0,1 g/100 g, respectivamente. Foram detectados oitenta e sete ácidos graxos, sendo 20:5w3 (EPA), 16:0, 22:6w3 (DHA), 18:0, 18:1w9, 16:1w7, 20:4w6 e 18:1w7 os principais. O teor de colesterol encontrado no camarão analisado é alto. Por outro lado, o teor de gordura é baixo e os níveis de ácidos graxos poliinsaturados, especialmente EPA e DHA, são altos.