158 resultados para (Trin.) Tzvel. roots rhizomes
Resumo:
This paper deals with some Millipedes (Diplopoda), which have been verified associated with or attacking on cultivated plants. The following forms are reported: 1) Orthomorpha (Orthomorpha) coarctata (Saussure, 1860) - Enormous numbers of individuals belonging to this species, whose synanthropic habits are frequentely emphasized, were collected around coffee-plants kept in a nursery. Young plants (with 10 cm) are mentioned as damaged by the species, which gnaws the stem, just above the roots. The dusting with benzene hexachloride (BHC) was successfully employed to prevent the invasions. Other occurrences of O. coarctata are reported, ecological and biological informations being also added. 2) Orthomorpha (Kalorthomorpha) gracilis (C. L. Koch, 1847) - Observed frequentely associated with the former species, being however less numerous. Both forms are very active, seemming to be widely distributed throughout the State of S. Paulo. 3) Cylindroiulus (Aneuloboiulus) britannicus (Verhoeff, 1891) - This species represents the first european Millipede verified in Brazil, by O. SCHUBART (1942a). The Author obtained a few specimens associated with O. gracilis, from the roots of lettuce plants. The lesions shown by the stem just above the roots seem to be due to both species. 4) Alloporus setiger Broelemann, 1902; Gymnostreptus olivaceus Schubart, 1944 and Pseudonannolene tricolor Broelemann, 1902 - Total damages determined by these species (mainly G. olivaceus) were observed in cultures of sugar-beet and melon. Actually, the Millipedes destroyed entirely the roots of the former plant and the fruits of the latter, representing a serious pest, here reported by the first time. Ecological and bionomical data are also included. 5) Pseudonannolene sp. (possibly P. paulista Broelemann, 1902) - Verified gnawing sweet-potatoes, about the crackings exhibited by the tubers. The crackings in sweet-potatoes appear to result in certain instances from a root-knot nematodes infection (Meloidogyne sp). P. paulista was recentely observed attacking potatoes, destroying from 6 to 30% of the tubers, according to the variety (BOOCK & LORDELLO, 1952).
Resumo:
The present paper relates a few experiments carried out to study the distribution of radiozinc in tomato seedlings as well its translocation in adult plants. 1 Tomato seedlings grown in nutrient solution were given during two weeks ca. 0.2 microcuries of Zn65C112; the seedlings were then harvested, and after careful washing of the roots with distiled water and diluted HC1, a radioautograph was taken (Fig. 1); this shows that the whole seedling, including the first cotyledon leaves are active; the Zn65 is preferentially concentrated, however, in the root system; this fact suggests that finding by ROSSITER (1953) that the roots of plants growing under natural conditions had a very high concentration of zinc is not due to soil contamination being ascribable to the physiology of such micronutrient. 2. The translocation of radiozinc was demonstrated by three different ways. In the first case, Zn65Cl2 was supplied to the nutrient solution during four weeks; three weeks after the addition of the radiozinc was discontinued, the newer leaves were detached and a radioautograph was taken (Fig. 2); the activity therein found shows that translocation occurred from the old leaves to the young ones. In the next experiment, identical procedure was followed but, instead of a radioautograph, different parts of the plant were ashed and counted; it was verified that 66.6 per cent of the activity supplied was absorbed; due to a great fixation within the roots only 5,6 per cent was translocated to the newer organs. In the third trial, Zn65C12 was directly applied to both upper and lower surfaces of medium aged leaves; counting the separated organs revealed that: 24.2 per cent of the activity applied hab been absorbed; however, 13.7 per cent translocated to the rest of the plant including to the roots. The author wishes to express his gratitude to Dr. P. R. Stout, Chairman, Dept. of Plant Nutrition, University of California, Berkeley and to Mr. A. B. Carlton for their help during part of this work. O autor agradece ao Laboratório de Isótopos da Universidade de São Paulo, na pessoa do Dr. T. Eston, o fornecimento do Zn65 usado neste trabalho.
Resumo:
1. The present work was carried out to study the effects of mineral nutrients in the yield as well as in the composition of cassava roots. The variety "Branca de Sta. Catarina" was grown by the sand culture method, the following treatments being used: N0 P0 K0, N0 P1 Kl, N1 P0 K1, N2 P1 K0, N2 P1 K1, N1 P2 K1, and N1 P1 K2, where the figures 0, 1, and 2 denote the relative proportion of a given element. The nutrients were given as follows: N = 35 grams of ammonium nitrate per pot loaded with 120 pounds of washed sand; P1 = 35 grams of monocalcium phosphate; Kl = 28 grams of sulfate of potash. Besides those fertilizers, each pot received 26 grams of magnesium sulfate and weekly doses of micronutrients as indicated by HOAGLAND and ARNON (1939). To apply the macronutrients the total doses were divided in three parts evenly distributed during the life cycle of cassava. 2. As far yield of roots and foliage are concerned, there are a few points to be considered: 2.1. the most striking effect on yield was verified when P was omitted from the fertilization; this treatment gave the poorest yields of the whole experiment; the need of that element for the phosphorylation of the starchy reserves explains such result; 2.2. phosphorus and nitrogen, under the experimental conditions, showed to be the most important nutrients for cassava; the effect of potassium in the weight of the roots produced was much less marked; it is noteworthy to mention, that in absence of potassium, the roots yield decreased whereas the foliage increased; as potassium is essential for the translocation of carbohydrates it is reasonable to admit that sugars produced in the leaves instead of going down and accumulate as starch in the roots were consumed in the production of more green matter. 3. Chemical analyses of roots revealed the following interesting points: 3.1. the lack of phosphorus brought about the most drastic reduction in the starch content of the roots; while the treatment N1 P1 K1 gave 32 per cent of starch, with NI PO Kl the amount found was 25 per cent; this result can be explained by the requirement of P for the enzymatic synthesis of starch; it has to be mentioned that the decrease in the starch content was associated with the remarkable drop in yield observed when P was omitted from the nutrient medium; 3.2. the double dosis of nitrogen in the treatment N2 P1 K1, gave the highest yields; however the increase in yield did not produce any industrial gain: whereas the treatment N1 P1 K1 gave 32 per cent of starch, by raising the N level to N2, the starch content fell to 24 per cent; now, considering the total amount of starch present in the roots, one can see, that the increase in roots yield did not compensate for the marked decrease in the starch content; that is, the amount of starch obtained with N1 P1 K1 does not differ statistically from the quantity obtained with N2 P1 K1; as far we know facts similar to this had been observed in sugar beets and sugar cane, as a result of the interaction between nitrogen and sugar produced; the biochemical aspect of the problem is very interesting: by raising the amount of assimilable nitrogen, instead of the carbohydrates polymerize to starch, they do combine to the amino groups to give proteinaceous materials; actually, it did happen that the protein content increased from 2.91 to 5.14 per cent.
Resumo:
Tomato roots heavily disfigured by root-knot nematodes were throughly mixed with soil. At various time intervals, samples were taken from the mixture and treated in closed containers by each of the folio wing nematicides: D.D., E.D.B. and M.B. The efficacy of the treatment was tested by setting indicator plants in the treated soil and by examining their roots for the presence of galls two months later. In other words, the ability of the three nematicides to penetrate nematode galls after various periods of rotting, which varied from 5 to 30 days was studied. The main conclusions drawn are as follows: a) no nematicide among the three listed above showed the ability for complete destruction of the nematodes protected inside the roots, for a number of small galls developed on the root system of the indicator plant in all treatments; b) smaller and less numerous galls were present on the roots of the indicator plants grown in soil treated after a rotting period of 30 days; c) however, the control obtained seems to be quite satisfactory economically, since the check plants grew poorly and have developed a very unhealthy root system. This is in accordance with STARK & LEAR (1947), LEAR (1951) and CICCARONE's (1951) statements. The results of the present experiments show again that awaiting for the rotting of galls of the root-knot nematodes is not indispensable for an economically convenient soil fumigation. Fields in which many fleshy infected roots from previous crops have been buried can be economically fumigated immediately, without any loss of time. Notwithstanding, when thick woody roots are present in the soil, the above statements may not hold true. This should constitute a new problem calling for further experiments. Another essay dealing with methyl bromide alone, consisted in treating cotton roots heavily disfigured by Meloidogyne incognita in a container (diameter = 28cm, height = 32 cm), which remained closed for five days. After the treatment, the roots were mixed with soil, in which tomato seedlings were planted. After a growing period of two months, the roots of the tomato plants were washed in running water and examined for the presence of galls. As an early infeccion was present in the root system of all plants, the inefficacy of the treatment has been proved.
Resumo:
Due to the great importance of coffee to the Brazilian economy, a good deal of the work carried out in the "Laboratório de Isótopos", E. E. A. "Luiz de Queiroz", Piracicaba, S. Paulo, Brazil, was dedicated to the study of some problems involving that plant. The first one was designed to verify a few aspects of the control of zinc deficiency which is common in many types of soils in Brazil. An experiment conducted in nutrient solution showed that the leaf absorption of the radiozinc was eight times as high as the root uptake; the lower surface of the leaves is particularly suited for this kind of absorption. Among the heavy metal micronutrients, only iron did not affect the absorption of the radiozinc; manganese, copper, and molybdenum brought about a decrease of fifty per cent in total uptake. In another pot experiment in which two soils typical of the coffee growing regions were used, namely, a sandy soil called "arenito de Bauru" and a heavy one, "terra roxa", only O.l and 0.2 per cent of the activity supplied to the roots was recovered", respectively. This indicates that under field conditions the farmer should not attempt to correct zinc deficiency by applying zinc salts to the soil: leaf sprays should be used wherever necessary. In order to find out the most suitable way to supply phosphatic fertilizers to the coffee plant, under normal farm conditions, an experiment with tagged superphosphate was carried out with the following methods of distribution of this material: (1) topdressed in a circular area around the trees; (2) placed in the bottom of a 15 cm deep furrow made around the plant; (3) placed in a semicircular furrow, as in the previous treatment; (4) sprayed directly to the leaves. It was verified that in the first case, circa 10 per cent of the phosphorus in the leaves came from the superphosphate; for the other treatments, the results ware, respectively: 2.4, 1.7, and 38.0 per cent. It is interesting to mention that the first and the last methods of distribution were those less used by the farmers; now they are being introduced in many coffee plantations. In a previous trial it was demonstrated that urea sprays were an adequate way to correct nitrogen deficiency under field conditions. An experiment was then set up in which urea-C14 was used to study the metabolism of this fertilizer in coffee leaves. In was verified that in a 9 hours period circa 95 per cent of the urea supplied to the leaves had been absorbed. The distribution of the nitrogen of the urea was followed by standard chemical procedures. On the other hand the fate of the carbonic moiety was studied with the aid of the radiochromatographic technique. Thus, the incorporation of C14 in aminoacids, sugars and organic acids was ascertained. Data obtained in this work gave a definite support to the idea that in coffee leaves, as in a few other higher plants, a mechanism similar to the urea cycle of animals does exist.
Resumo:
In the State of S. Paulo, Brazil, squash plants (Cucurbita spp.) are attacked by the Javanese nematode (Meloidogyne javanica) and by M. incognita acrita. Squash belongs to that group of plants in which the root-knot nematodes break through the root surface, so that the egg-producing females protrude from the root, showing yellowish or brow nish egg masses attached to them. Washed roots show numerous small dark spots, each corresponding to an ootheca, which is adhering to a mature female. A curious abnormal female of M. i. acrita was obtained from a sample of squash roots. This female's body showed two globular parts, separated by a deep constriction. The convoluted ovaries were found to fill both portions of the body.
Resumo:
This paper deals with galled peach roots from two localities in Brazil (Ouro Prêto and Piracicaba). Both samples were found attacked by Meloidogyne incognita acrita Chitwood, 1949. The material from Piracicaba also harboured two species of dagger nematodes (Xiphinema campinense Lordello, 1951, and X. krugi Lordello, 1955).
Resumo:
In order to study the phosphorus availability from various phosphates fertilizers an experiment was performed according to the biological seedling method of Neubauer. The physico-chemical properties of the soil "terra roxa-misturada", a red soil derived from basaltic rocks are given in the Portuguese text. Rice (Oryza sativa, L.) instead of rye (Secale cereale, L.) was used. Five replications of each of the following treatments were made: 1 - check, with 350 g of sand 2 - 350 g of sand plus 100 g of soil 3 - 350 g of sand and plus 100 g of soil plus 40 mg of P2O5, from superphosphate. 4 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5. from Olinda (Brazil) phosphorite. 5 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5 from Florida (U. S. A.) phosphorite. 6 - 350 g os sand plus 100 g of soil plus 40 mg of P2O5 from Hyperphosphate, a commertial name of a North African (Gafsa) phosphorite. 7 - 350 g of sand plus 100 g of soil plus 40 mg of P2O5 from Araxá (Brazil) apatite. After 18 days of growth, the roots and tops of rice seedlings were harvested and analysed for phosphorus, and the results are summarized in table 1. Table 1 - Milligrams of P2O5 determined in rice seedlings. Treatments Mean of 5 replications mg of P2O5 1 ..................... 24.196 2 ..................... 23.850 3 ..................... 30.724 4 ..................... 27.620 5 ..................... 27.480 6..................... 30.210 7 ..................... 26.032 The least significant difference at the 5% level by Tukey's procedure for comparisons among the treatments means is 1.365 mg of P(2)0. It is interesting to observe that rice plants did not take any phosphorus from the soil according to he data of the treatments n.° 1 and n.° 2. This can be explained by the high phosphorus fixing capacity of the soil "terra roxa misturada".
Resumo:
The present work was carried out in order to study: 1 - The effect of several levels of P and Fe on the chemical composition of young coffee plants (Coffea arabica L., var. Caturra, KMC); 2 - The influence of P and Fe in the up take of N, K, Ca, and Mg as revealed by the chemical analyses of coffee tissues. Five treatments with two replicates were used, namely: 1 - Control - plants grown in the solution 2 of HOAGLAND & ARNON (1950); 2 - Omission of P; 3 - 310 p. p.m. of P; 4 - Omission of Fe; 5-28 p. p.m. of Fe. The experiment was carried out in the grenhouse, the pH of the different solutions being kept between 5. 0 and 5. 5; aeration was provided to the solutions. The following conclusions wen drawn: 1 - When P was omitted from the nutrient solution, there was an increase in N, K and Fe content of the plant as compared to the levels found in control plants; 2 - Raising the P level in the substrate brought about an apparent luxury consumption of this element as well as an increase in plant Mg; 3 - High P in the nutrient solution on the other hand, decreased Fe up take but increased the K content; 4 - K content was even higher in plants corresponding to the excess Fe treatment; 5 - A very high P content was found in the roots from the excess Fe treatment, this suggesting the formation of ferric phosphate in those organs; 6 - The control plants had less Fe than those corresponding to the minus Fe treatment.
Resumo:
WATER-CULTURE EXPERIMENTS. Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, man ganese, copper and molybdenum) and method of application. Inert zinc was supplied at an uniform rate of 0. 05 p. p. m.; the levels of iron supply were 0, 1.0, and 10.0 p. p.m.; manganese was supplied in three doses 0, 0.5, and 5.0 p. p.m.; copper- 0, 0. 02, and 0. 2 p. p. m.; molybdenum- 0, 0. 01, and 0. 1 p. p. m. When applied to the nutrient solution the activity os the radiozinc (as zinc chloride) was 0. 15 microcuries per plant. In the study of the leaf absorption, Zn65 was supplied at the level of 0. 10 microcuries per plant; in this case the radioative material was brushed either on the lower or on the upper surface or both two pairs of mature leaves. The absorption period was 8 weeks. The radioactivity assay showed the following results: 1 - Among the heavy metals herein investigated the iron concentration did not affect the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more when compared with the control plants; when, however, these micronutrients were omitted from the nutrient solution, an increase in the uptake of zinc was registered in the minus Cu treatment only. The effects of high levels of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2 - The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves an preferentially located in the lower surface - in this treatment, about 40 per cent of the activity was absorved and around 12 per cent were translocated either to the old or to the newer organs. Chemical analyses for heavy metals, were carried out only in the plants received Zn65Cl2 in the nutrient solution; the results were as follows; 1 - Control plants had, per 1,000 gm, of dry weight the following amounts in mg.: Zn- 48 in the roots and 29 in the tops; Fe- 165 in the roots and 9 in the tops; Mn- 58 in the roots and 15 in the tops, Cu- 15 in the roots and 1. 2 in the tops; Mo- 2. 8 in the roots and 0. 45 in the tops. 2 - The effect of different levels of micronutrients in the composition of the plants can be summarized as follows: Fe and Zn- when omitted from the nutrient solution, the iron and zinc contents in the roots decreased, no variation being noted in the tops; the higher dosis caused an accumulation in the roots but no apparent effect in the tops; Mn- by omitting this micronutrient a decrease in its content in the roots was noted, where as the concentration in the tops was the same; Mo- no variation in roots and tops contents when molybdenum was omitted; higher dosis of manganese and molybdenum increased the amounts formed both in the roots and in the tops. 3 - The influence of the different concentrations of micronutrients heavy metals on the zinc content of the coffee plants can be described by saying that: Fe and Mo- no marked variation; Mn- no effect when omitted, reduced amount when the high dosis was supplied; Mn- when the plants did not receive manganese the zinc content in roots and tops was the same as in the control plants; a decrease in the zinc content of the total plant occurred when the high dosis was employed; Cu -the situation is similar to that described for manganese. Hence, results showed by the chemical analyses roughly correspond to those of the radioactivity assay; the use of the tracer technique, however, gave best informations along this line. SOIL-POTS EXPERIMENTS. The two types of soils which when selected support the most extensive coffee plantations in the State of São Paulo, Brazil: "arenito de Bauru", a light sandy soil and "terra roxa legitima", a red soil derived from basalt. Besides NPK containing salts, the coffee plants were given two doses of inert zinc (65 and 130 mg ZnCl2 per pot) and radiozinc at a total activity of 10(6) counts/minute. The results of the countings can be summarized as follows: 1 - When plants were grown in "arenito de Bauru" the activity absorbed as per cent of the total activity supplied was not affected by the dosis of inert zinc. The highest value found was around 0. 1 per cent. 2 - For the "terra roxa" plants, the situation is almost the same; there was, however, a slight increase in the absorption of the radiozinc when 130 mgm of ZnClg2 was given: a little above 0. 2 per cent of the activity supplied was absorbed. The results clearly show that the young coffee plants practically did not absorb none of the zinc supplied; two reasons at least could be pointed out to explain such a fact: 1 - Zinc fixation by an exchange with magnesium or by filling holes in the octahedral layer of aluminosilicates, probably kaolinite; 2 - No need for fertilizer zinc in the particular stage of life cycle under which the experiment was set up. The data from chemical analysis are roughly parallel to the above mentioned. When one attempts to compare - by taking data herein reported zinc uptake from nutrient solution, leaf brushing or from fertilizers in the soil, a practical conclusion can be drawn: the control of zinc deficiency in coffee plants should not be done by adding the zinc salts to the soil; in other words: the soil applications used so extensively in other countries seem not to be suitable for our conditions; hence zinc sprays should be used wherever necessary.
Resumo:
This paper deals with cassava leaf, stem and root production. Field competition trial showed that production of leaves and stems are the same; as that of roots and that leaves and stems can be used in animal feeding beside the industrialization of roots.
Resumo:
Four experiments on root formation on cuttings of mulberry trees of the variety Catania 1 were carried out. In each case the hormones Dieradix "M D", Dieradix "D", indol 3-yl-acetic acid, and I-naphthyl acetic acid were used, besides the control, without hormone. In all cases "normal" and "upside-down" planting were tried. The percentage x of cuttings with roots, after 54 days, were computed and transformed by the formula y = arc sin √P/100 for use in statistical analysis. The combined analysis of variance of the 4 trials led to the following results: "Upside-down" planting showed significantly higher percentage of rooting; Indol 3-yl-acetic acid was significantly better than control or other hormones. The percentages of rooted cuttings were as follows: Normal planting Upside-dow planting Indol 3-yl acetic acid 43.5% 90.9% I-naphthyl acetic acid 1.9% 69.3% Control 4.7% 22.2% Dieradix «M D» 2.4% 63.8% Dieradix «D» 1.3% 36.0%
Resumo:
Eight root-knot nematode forms are known to occur in Brazil, namely Meloidogyne exigua, M. incognita, M. j. javanica, M. j. bauruensis, M. inornata, M. hapla, M. arenaria arenaria and M. coffeicola. After presenting a historical resume of the root-knot disease, as well as observations on symptoms, distribution and spread, and life history of the nematodes, a study of the morphological characters used in identification of species is made, a key for separating the forms referred to above being also prepared. As no information on host plants of the coffee root-knot nematode (M. exigua) was available, a few tests were performed, as an attempt to infect several plant species. Pepper (Capsicum annuun) was the only plant attacked by M. exigua, having failed all attempts to infect nine other plants, including tomato var. Rutgers. M. exigua incited formation of galls on roots of cucumber, but no adult female was found in the tissue. In a final chapter dealing with control, a review of all methods available is presented.
Resumo:
Young coffee plants were allowed to absorb radiophosphate via leaves during 30, 60, 90 and 120 minutes and via roots during 24 hours. It was verified that leaf absorption was almost twice more intense than root uptake despite the considerable difference in time of contact which would favour the latter. Translocation of leaf applied material was also more marked.
Resumo:
Caryboca paranaensis n.g., n.sp. (Nemata, Actinolaimidae) was found inhabiting soil around coffee roots sent in from Cornélio Procópio, State of Paraná, Brazil. Definition of the new genus: Actinolaimidae, Actinolaiminae. Lip region distinctly offset by a constriction and showing a cuticularized basket-like structure provided with lateral denticles and two rather strong teeth pointing forwards. Cuticular rod-like thickenings extending back from the basket-like structure to the guiding-ring. Anterior part of oesophagus a non-muscular, narrow tube; posterior part wider and provided with strongly developed radial musculature. Gonads paired and reflexed. Tail attenuated, pointed. Males and food habits unknown. Caryboca n.g. differs from Actinolaimus Cobb, 1913, by having a labial basket-like structure as well as by the non-muscular nature of the anterior part of oesophagus. Caryboca n.g. differs from Carcharolaimus Thome, 1939, by having two strong pharingeal teeth and pointed tail.