524 resultados para tomografia computadorizada por feixe de elétrons
Resumo:
OBJETIVO: Utilizar o código PENELOPE e desenvolver geometrias onde estão presentes heterogeneidades para simular o comportamento do feixe de fótons nessas condições. MATERIAIS E MÉTODOS: Foram feitas simulações do comportamento da radiação ionizante para o caso homogêneo, apenas água, e para os casos heterogêneos, com diferentes materiais. Consideraram-se geometrias cúbicas para os fantomas e geometrias em forma de paralelepípedos para as heterogeneidades com a seguinte composição: tecido simulador de osso e pulmão, seguindo recomendações da International Commission on Radiological Protection, e titânio, alumínio e prata. Definiram-se, como parâmetros de entrada: a energia e o tipo de partícula da fonte, 6 MV de fótons; a distância fonte-superfície de 100 cm; e o campo de radiação de 10x 10 cm². RESULTADOS: Obtiveram-se curvas de percentual de dose em profundidade para todos os casos. Observou-se que em materiais com densidade eletrônica alta, como a prata, a dose absorvida é maior em relação à dose absorvida no fantoma homogêneo, enquanto no tecido simulador de pulmão a dose é menor. CONCLUSÃO: Os resultados obtidos demonstram a importância de se considerar heterogeneidades nos algoritmos dos sistemas de planejamento usados no cálculo da distribuição de dose nos pacientes, evitando-se sub ou superdosagem dos tecidos próximos às heterogeneidades.
Resumo:
OBJETIVO: Comparar a acurácia e a custo-efetividade do estadiamento metabólico (EM) com o FDG-PET em relação ao estadiamento convencional (EC) no estadiamento inicial de pacientes com câncer de pulmão não pequenas células (CPNPC). MATERIAIS E MÉTODOS: Noventa e cinco pacientes com diagnóstico inicial de CPNPC foram estadiados antes do início do tratamento. Os resultados do EC e EM foram comparados quanto a definição do tratamento e incidência de toracotomia fútil em cada estratégia. RESULTADOS: O EM com FDG-PET classificou 48,4% dos pacientes como estádio mais avançado e 5,3% como menos avançado. O resultado do EM modificaria o tratamento em 41% dos pacientes. A toracotomia foi considerada fútil em 47% dos pacientes com EC e em 19% dos casos com EM. O custo das toracotomias fúteis em oito pacientes no EM foi de R$ 79.720, enquanto em 31 pacientes no EC seria de R$ 308.915. Apenas esta economia seria mais que suficiente para cobrir os custos de todos os exames de FDG-PET nos 95 pacientes (R$ 126.350) ou de FDG-PET/CT (R$ 193.515). CONCLUSÃO: O EM com FDG-PET tem maior acurácia que o EC em pacientes com CPNPC. A FDG-PET e FDG-PET/CT são custo-efetivas e sua utilização se justifica economicamente na saúde pública no Brasil.
Resumo:
The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase and ab initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions.
Resumo:
The photofragmentation of a core-excited halogenated compound, Halotane (C2F3HClBr), generally used as anesthetic by inhalation, has been studied using high energy photons and electrons near C 1s ionization edge (~ 300 eV), using time-of-flight mass spectrometry in multicoincidence mode. We observe strong differences between the molecular fragmentation induced by photons and electron impact.
Resumo:
A simple and inexpensive time-of-flight mass spectrometer, dedicated to the study of gas-phase ionization processes induced by high energy electrons (0.5 - 3.0 keV), is described. The spectrometer design is based on the Wiley-McLaren principle, with a total length of about 18 cm. As a demonstration of the performance of the apparatus, mass spectra for Ar, CH4, CO2, and SF6, obtained at 1 keV electron energy, are presented.
Resumo:
Aromatic nitration is one of the most relevant class of reactions in organic chemistry. It has been intensively studied by both experimental, including works in the condensed as well as in the gas phase, and theoretical procedures. However, the published results do not seem to converge to an unique mechanism. Electrophilic substitution and electron transfer, in an exclusive way, are both proposed as the main mechanism for the reaction. We review these proposals and discuss the most recent findings.
Resumo:
This article reports on some basic and conceptual principles concerning electron transfer (ET) and/or intervalence transfer (IT) phenomena in inorganic mixed-valence systems.
Resumo:
Electron stimulated ion desorption (ESID) and degradation studies of polypyrrole doped with dodecylsulfate (PPy/DS) deposited on FTO were performed using time-of-flight mass spectrometry (TOF-MS) for ion analysis. The results suggest a strong contribution from fragments of the dodecylsulfate hydrocarbon chain to the mass spectra. In the 650-1500 eV energy range the ion yield curves show maxima at about 600, 1200 and 1400 eV, which can be related to carbon, nitrogen and oxygen-containing fragments, respectively, and interpreted in terms of the Auger Stimulated Ion Desorption (ASID) mechanism. Degradation studies indicate rapid loss of heavier hydrocarbons and an increase of bulk and substrate fragments. Some degradation profiles suggest formation of new species.
Resumo:
We describe the design and tests of a set-up mounted in a conventional double beam spectrophotometer, which allows the determination of optical density of samples confined in a long liquid core waveguide (LCW) capillary. Very long optical path length can be achieved with capillary cell, allowing measurements of samples with very low optical densities. The device uses a custom optical concentrator optically coupled to LCW (TEFLON® AF). Optical density measurements, carried out using a LCW of ~ 45 cm, were in accordance with the Beer-Lambert Law. Thus, it was possible to analyze quantitatively samples at concentrations 45 fold lower than that regularly used in spectrophotometric measurements.
Resumo:
The presence of chloramphenicol residues in goat milk can cause toxic effects in the population. The present work consists of the optimization and validation of analytical methodology for determination of chloramphenicol residues in goat milk by GC/ECD. The extraction was made with ethyl acetate and the clean-up with SPE-C18. The identification was made by comparison of retention time and GC/MS, and the quantification by external standard. The method was selective, linearity (0.998), precise (5.8-13.4%), exact (69.87-73.71%) and robust. The LOD and LOQ of method were 0.030 and 0.10 μg/kg, respectively. The method was efficiently for analysis of chloramphenicol in goat milk.
Resumo:
The development of analytical methods for determination of eight pesticides of different chemical classes (trichlorfon, propanil, fipronil, propiconazole, trifloxystrobin, permethrin, difenoconazole and azoxystrobin) in sediments with gas chromatography-micro-electron capture detector (GC/µECD) and comprehensive two-dimensional gas chromatography with micro-electron capture detector (GCxGC/µECD) is described. These methods were applied to real sediment samples, and the best results were obtained using a 5% diphenyl-methylpolysiloxane column for 1D-GC. For GCxGC the same column was employed in the first dimension and a 50%-phenyl-methylpolysiloxane stationary phase was placed in the second dimension. Due to the superior peak capacity and selectivity of GCxGC, interfering matrix peaks were separated from analytes, showing a better performance of GCxGC.
Resumo:
We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS) on the decolorization of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5). In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS) and 96.5% (supplemented with AQDS). The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.
Resumo:
The present work describes the determination of polychlorinated biphenyls in 123 umbilical cord serum samples by liquid-liquid extraction method with acid hydrolyze step and analysis by GC-mECD. The analytical method was evaluated with following figures of merit for all PCBs: linearity (>0.997); precision (<12.55%); recoveries (73-119%); limit of detection (0.1 ng mL-1); limit of quantification (0.25-0.5 ng mL-1). The results showed high contamination in the analyzed samples. PCB more frequent was 138 (66.7%), followed by 180 (55.3%) and 52 (51.3%).
Resumo:
Analysis of seven pesticides in sediments was successfully achieved using comprehensive two-dimensional gas chromatography with micro-electron capture detection, as it provided higher sensitivity and less matrix interference. Repeatability and intermediate precision of peak areas and heights were less than 4% and the recovery percentage for the analytes ranged from 52 to 115%. Instrumental LOD and LOQ were in the range of 0.60 to 2.31 μg L-1 and 1.83 to 5.62 μg L-1, respectively. Concentrations of 3.34 μg kg-1 (dry basis) for trifloxystrobin and azoxystrobin (below the LOQ) were found in a sediment sample.