456 resultados para Caracterização acústica
Resumo:
The aquatic humic substances (AHS) investigated in this study were conventionally isolated from Rio Negro waters - Amazonas State/Brazil by means of the collector XAD 8. A special five-stage tangential-flow ultrafiltration device was used for analytical fractionation of AHS. The fractionation patterns (6 fractions each) showed that metal traces remaining in AHS after their XAD 8 isolation have different size distributions. For instance, the major percentage of traces of Ni, Cu, Zn, Cd and Pb (determined using ICP-AES) was preferably complexed by molecules with relatively high molecular size (30-100 kDa) and the following complexation order was characterized: F2 >> F1 = F4 = F5 > F3 > F6. Moreover, the species formed between AHS and metals prepared by spiking, showed distribution patterns changing as a function of the complexation time (ageing process), indicating a slow transformation process and an inner rearrangements in the binding sites within the AHS molecules.
Resumo:
A simple method of home made preparation and physical-chemical characterization of orange wine was investigated. Saccharomyces cerevisiae was used as inoculum for wine-making by fermentation. Chemical compositions related to the aroma components seems to be very similar between grape and orange wines.
Resumo:
The reactions of four new unsymmetrical N,O-donor ligands, {H2BBPETEN= [N-(2-hydroxybenzyl) - N,N' - bis(2 methylpyridyl) -N'-(hydroxyethyl) ethylenodiamine], H3BPETEN=[N,N'- bis(2-hydroxybenzyl) -N- (2-methylpyridyl) -N'- (hydroxyethyl) ethylenodiamine], HTPETEN=[N,N,N'- tris(2-methylpyridyl) -N'- (hydroxyethyl) ethylenodiamine] and H3BIMETEN=[N,N'-(2-hydroxybenzyl)-N-(1-methylimidazol-2-il-methyl)-N'- (hydroxyethyl)ethylenodiamine]}, with Cu(II) salts afforded the following mononuclear compounds: [CuII(HBBPETEN)]ClO4, [CuII(H2BPETEN)]ClO4 , [CuII(HTPETEN)](PF6)2 and [CuII(H2BIMETEN)]ClO4 . All were characterized by EPR, electronic spectroscopy and electrochemistry. The four copper (II) compounds showed interesting electrochemistry properties. All presented an anodic wave that can be attributed to the Cu (I) oxide formation at the electrode surface, or to a Cu0 sediment at the same surface or yet, to Cu(I) -> Cu(II) oxidation process with coupled chemistry reaction, due to their irreversibility. Two of the complexes are described as interesting synthetic models for the active site of the metalloenzyme galactose oxidase.
Resumo:
The preparation of gamma-LiAlO2 by coprecipitation and sol-gel synthesis was investigated. Ceramic powders obtained by coprecipitation synthesis were prepared from aqueous solutions of aluminum and lithium nitrates using sodium hydroxide as precipitant agent. By sol-gel synthesis, the ceramic powders were prepared from hydrolysis of aluminum isopropoxide. The materials obtained by two routes of synthesis were dried at 80ºC and calcined at 550, 750, 950 and 1150ºC. The characterization was done by X-ray diffraction, infrared spectroscopy, emission and absorption atomic spectrometry, helium picnometry, specific surface area (BET method) and scanning electronic microscopy. Mixtures of crystalline phases were obtained by coprecipitation synthesis: 80ºC- LiAl2(OH)7.2H2O + Al(OH)3; 550 and 750ºC- alpha-LiAlO2 + eta-Al2O3; 950 and 1150ºC- gamma-LiAlO2 + LiAl5O8. Chemical analysis showed molar ration Al/Li @ 3. Crystalline single-phases were obtained by sol-gel synthesis above 550ºC: 550ºC-alpha-LiAlO2; 750, 950 and 1150ºC-gamma-LiAlO2. These powders presented molar ration Al/Li @ 1. Thus, gamma-LiAlO2 crystalline phase was obtained at 750ºC by sol-gel synthesis while by coprecipitation synthesis, a mixture of crystalline phases was obtained. These results showed the superiority of the sol-gel synthesis for the preparation of pure gamma-LiAlO2.
Resumo:
The characterization of rice husk ash, a deriving by-product of the burning of the rice husk during the rice processing is the object of this study. This by-product, for being rich in silica, can be an important raw material for the production of siliceous ceramics, such as thermal insulators and refractory. A combination of surface analysis, thermal analysis and microscopy analysis techniques was used for the characterization. The characterized by-product presented as main component the silica, under amorphous form, with a maximum content of alkalis around 1%, features that become it potentially interesting for the production of ceramic materials.
Resumo:
Tetrahydroborate complexes of copper (I) with bidentate phosphines, [Cu(eta²-BH4)(dppm)] (1), [Cu(eta²-BH4)(dppe)] (2), [Cu(eta²-BH4)(cis-dppet)] (3) and [Cu(eta²-BH4)(dppb)] (4) (dppm = bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino) ethane; cis-dppet = 1,2-cis(diphenylphosphino)ethene; dppb = 1,4-bis(diphenylphosphino)butane) were prepared and characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. The IR data for 1-4 showed bands typical of a bidentate coordination of BH4 group to the copper atom and the 31P{¹H} NMR spectra indicated that the phosphorous atoms are chelating the metal centre. The thermal behavior of the compounds was investigated and suggested that their thermal stability is influenced by the phosphines. Their thermal stability decreased as follows: [Cu(eta²-BH4)(dppe)] (2) > [Cu(eta²-BH4)(dppm)] (1) > [Cu(eta²-BH4)(dppb)] (4) > [Cu(eta²-BH4)(cis-dppet)] (3). According to thermal analysis and X-ray diffraction patterns all compounds decomposed giving Cu(BO2)2, CuO, CuO2 and Cu as final products.