453 resultados para Plasmodium falcipaarum
Resumo:
The apicomplexan parasite Toxoplasma gondii is unusual in being able to infect almost any cell from almost any warm-blooded animal it encounters. This extraordinary host-range contrasts with its far more particular cousins such as the various species of the malaria parasite Plasmodium where each species of parasite has a single genus or even species of host that it can infect. Genetic and genomic studies have revealed a key role for a number of gene families in how Toxoplasma invades a host cell, modulates gene expression of that cell and successfully evades the resulting immune response. In this review, I will explore the hypothesis that a combination of sexual recombination and expansion of host range may be the major driving forces in the evolution of some of these gene families and the specific genes they encompass. These ideas stem from results and thoughts published by several labs in the last few years but especially recent papers on the role of different forms of rhoptry proteins in the relative virulence of F1 Toxoplasma progeny in a particular host species (mice).
Resumo:
As part of our program screening the flora of the Lake Victoria Region, a total of 54 organic extracts from seven plant families (8 species) were individually tested for antiplasmodial activity against chloroquine-sensitive [Sierra Leone (D-6)] and chloroquine-resistant [Vietnam (W-2)] strains. Only 22% of these extracts exhibited very high in vitro antiplasmodial activity. Six methanol (MeOH) extracts and one chloroform extract showed in vitro antiplasmodial activity against the D-6 Plasmodium falciparum strain, while only three MeOH extracts were active against the W-2 strain. All of the ethyl acetate extracts proved to be inactive against both strains of P. falciparum. A brine shrimp cytotoxicity assay was used to predict the potential toxicity of the extracts. The cytotoxicity to antiplasmodial ratios for the MeOH extracts were found to be greater than 100, which could indicate that the extracts are of low toxicity.
Resumo:
A longitudinal study of malaria vectors aiming to describe the intensity of transmission was carried out in five villages of Southern Venezuela between January 1999-April 2000. The man-biting, sporozoite and entomological inoculation rates (EIR) were calculated based on 121 all-night collections of anophelines landing on humans, CDC light traps and ultra violet up-draft traps. A total of 6,027 female mosquitoes representing seven species were collected. The most abundant species were Anopheles marajoara Galvão & Damasceno (56.7%) and Anopheles darlingi Root (33%), which together accounted for 89.7% of the total anophelines collected. The mean biting rate for An. marajoara was 1.27 (SD + 0.81); it was 0.74 (SD + 0.91) for An. darlingand 0.11 (SD + 0.10) for Anopheles neomaculipalpus Curry and the overall biting rate was 2.29 (SD + 1.06). A total of 5,886 mosquitoes collected by all three methods were assayed by ELISA and 28 pools, equivalent to 28 mosquitoes, yielded positive results for Plasmodium spp. CS protein. An. neomaculipalpus had the highest sporozoite rate 0.84% (3/356), followed by An. darlingi 0.82% (16/1,948) and An. marajoara 0.27% (9/3,332). The overall sporozoite rate was 0.48% (28/5,886). The rates of infection by Plasmodium species in mosquitoes were 0.37% (22/5,886) for Plasmodium vivax(Grassi & Feletti) and 0.10% (6/5,886) for Plasmodium falciparum (Welch). The estimated overall EIR for An. darling was 2.21 infective bites/person/year, 1.25 for An. marajoara and 0.34 for An. neomaculipalpus. The overall EIR was four infective bites/person/year. The biting rate, the sporozoite rate and the EIR are too low to be indicators of the efficacy of control campaigns in this area.
Resumo:
The Anopheles (Nyssorhynchus) albitarsis complex includes six species: An. albitarsis, Anopheles oryzalimnetes Wilkerson and Motoki, n. sp., Anopheles marajoara, Anopheles deaneorum, Anopheles janconnae Wilkerson and Sallum, n. sp. and An. albitarsis F. Except for An. deaneorum, species of the complex are indistinguishable when only using morphology. The problematic distinction among species of the complex has made study of malaria transmission and ecology of An. albitarsis s.l. difficult. Consequently, involvement of species of the An. albitarsis complex in human Plasmodium transmission is not clear throughout its distribution range. With the aim of clarifying the taxonomy of the above species, with the exception of An. albitarsis F, we present comparative morphological and morphometric analyses, morphological redescriptions of three species and description of two new species using individuals from populations in Brazil, Paraguay, Argentina and Venezuela. The study included characters from adult females, males, fourth-instar larvae, pupae and male genitalia of An. albitarsis, An. marajoara, An. deaneorum and An. oryzalimnetes n. sp. For An. janconnae n. sp. only characters of the female, male and male genitalia were analyzed. Fourth-instar larvae, pupae and male genitalia characteristics of all five species are illustrated. Bionomics and distribution data are given based on published literature records.
Resumo:
Malaria is a serious health problem in the states of Córdoba and Antioquia, Northwestern Colombia, where 64.4% of total Colombian cases were reported in 2007. Because little entomological information is available in this region, the aim of this work was to identify the Anopheles species composition and natural infectivity of mosquitoes distributed in seven localities with highest malaria transmission. A total of 1,768 Anopheles mosquitoes were collected using human landing catches from March 2007-July 2008. Ten species were identified; overall, Anopheles nuneztovari s.l. was the most widespread (62%) and showed the highest average human biting rates. There were six other species of the Nyssorhynchus subgenus: Anopheles albimanus (11.6%), Anopheles darlingi (9.8%), Anopheles braziliensis (6.6%), Anopheles triannulatus s.l. (3.5%), Anopheles albitarsis s.l. and Anopheles oswaldoi s.l. at < 1%; and three of the Anopheles subgenus: Anopheles punctimacula, Anopheles pseudopunctipennis s.l. and Anopheles neomaculipalpusat < 1% each. Two species from Córdoba, An. nuneztovari and An. darlingi, were found to be naturally infected by Plasmodium vivax VK247, as determined by ELISA and confirmed by nested PCR. All species were active indoors and outdoors. These results provide basic information for targeted vector control strategies in these localities.
Resumo:
In Venezuela, a total of 363,466 malaria cases were reported between 1999-2009. Several states are experiencing malaria epidemics, increasing the risk of vector and possibly transfusion transmission. We investigated the risk of transfusion transmission in blood banks from endemic and non-endemic areas of Venezuela by examining blood donations for evidence of malaria infection. For this, commercial kits were used to detect both malaria-specific antibodies (all species) and malaria antigen (Plasmodium falciparum only) in samples from Venezuelan blood donors (n = 762). All samples were further studied by microscopy and polymerase chain reaction (PCR). The antibody results showed that P. falciparum-infected patients had a lower sample/cut-off ratio than Plasmodium vivax-infected patients. Conversely, a higher ratio for antigen was observed among all P. falciparum-infected individuals. Sensitivity and specificity were higher for malarial antigens (100 and 99.8%) than for antibodies (82.2 and 97.4%). Antibody-positive donors were observed in Caracas, Ciudad Bolívar, Puerto Ayacucho and Cumaná, with prevalences of 1.02, 1.60, 3.23 and 3.63%, respectively. No PCR-positive samples were observed among the donors. However, our results show significant levels of seropositivity in blood donors, suggesting that more effective measures are required to ensure that transfusion transmission does not occur.
Resumo:
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.
Resumo:
Despite not being a criterion for severe malaria, thrombocytopenia is one of the most common complications of both Plasmodium vivax and Plasmodium falciparum malaria. In a systematic review of the literature, platelet counts under 150,000/mm³ ranged from 24-94% in patients with acute malaria and this frequency was not different between the two major species that affected humans. Minor bleeding is mentioned in case reports of patients with P. vivax infection and may be explained by medullary compensation with the release of mega platelets in the peripheral circulation by megakaryocytes, thus maintaining a good primary haemostasis. The speculated mechanisms leading to thrombocytopenia are: coagulation disturbances, splenomegaly, bone marrow alterations, antibody-mediated platelet destruction, oxidative stress and the role of platelets as cofactors in triggering severe malaria. Data from experimental models are presented and, despite not being rare, there is no clear recommendation on the adequate management of this haematological complication. In most cases, a conservative approach is adopted and platelet counts usually revert to normal ranges a few days after efficacious antimalarial treatment. More studies are needed to specifically clarify if thrombocytopenia is the cause or consequence of the clinical disease spectrum.
Resumo:
Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs) that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.
Resumo:
Malaria remains a major infectious disease that affects millions of people. Once infected with Plasmodium parasites, a host can develop a broad range of clinical presentations, which result from complex interactions between factors derived from the host, the parasite and the environment. Intense research has focused on the identification of reliable predictors for exposure, susceptibility to infection and the development of severe complications during malaria. Although most promising markers are based on the current understanding of malaria immunopathogenesis, some are also focused more broadly on mechanisms of tissue damage and inflammation. Taken together, these markers can help optimise therapeutic strategies and reduce disease burden. Here, we review the recent advances in the identification of malarial biomarkers, focusing on those related to parasite exposure and disease susceptibility. We also discuss priorities for research in biomarkers for severe malaria.
Resumo:
Malaria is the most important parasitic disease worldwide, responsible for an estimated 225 million clinical cases each year. It mainly affects children, pregnant women and non-immune adults who frequently die victims of cerebral manifestations and anaemia. Although the contribution of the American continent to the global malaria burden is only around 1.2 million clinical cases annually, there are 170 million inhabitants living at risk of malaria transmission in this region. On the African continent, where Plasmodium falciparum is the most prevalent human malaria parasite, anaemia is responsible for about half of the malaria-related deaths. Conversely, in Latin America (LA), malaria-related anaemia appears to be uncommon, though there is a limited knowledge about its real prevalence. This may be partially explained by several factors, including that the overall malaria burden in LA is significantly lower than that of Africa, that Plasmodium vivax, the predominant Plasmodium species in the region, appears to display a different clinical spectrus and most likely because better health services in LA prevent the development of severe malaria cases. With the aim of contributing to the understanding of the real importance of malaria-related anaemia in LA, we discuss here a revision of the available literature on the subject and the usefulness of experimental animal models, including New World monkeys, particularly for the study of the mechanisms involved in the pathogenesis of malaria.
Resumo:
Malaria is currently one of the most serious public health problems in Colombia with an endemic/epidemic transmission pattern that has maintained endemic levels and an average of 105,000 annual clinical cases being reported over the last five years. Plasmodium vivax accounts for approximately 70% of reported cases with the remainder attributed almost exclusively to Plasmodium falciparum. A limited number of severe and complicated cases have resulted in mortality, which is a downward trend that has been maintained over the last few years. More than 90% of the malaria cases in Colombia are confined to 70 municipalities (about 7% of the total municipalities of Colombia), with high predominance (85%) in rural areas. The purpose of this paper is to review the progress of malaria-eradication activities and control measures over the past century within the eco-epidemiologic context of malaria transmission together with official consolidated morbidity and mortality reports. This review may contribute to the formulation of new antimalarial strategies and policies intended to achieve malaria elimination/eradication in Colombia and in the region.
Resumo:
Recently, we described the improved immunogenicity of new malaria vaccine candidates based on the expression of fusion proteins containing immunodominant epitopes of merozoites and Salmonella enterica serovar Typhimurium flagellin (FliC) protein as an innate immune agonist. Here, we tested whether a similar strategy, based on an immunodominant B-cell epitope from malaria sporozoites, could also generate immunogenic fusion polypeptides. A recombinant His6-tagged FliC protein containing the C-terminal repeat regions of the VK210 variant of Plasmodium vivax circumsporozoite (CS) protein was constructed. This recombinant protein was successfully expressed in Escherichia coli as soluble protein and was purified by affinity to Ni-agarose beads followed by ion exchange chromatography. A monoclonal antibody specific for the CS protein of P. vivax sporozoites (VK210) was able to recognise the purified protein. C57BL/6 mice subcutaneously immunised with the recombinant fusion protein in the absence of any conventional adjuvant developed protein-specific systemic antibody responses. However, in mice genetically deficient in expression of TLR5, this immune response was extremely low. These results extend our previous observations concerning the immunogenicity of these recombinant fusion proteins and provide evidence that the main mechanism responsible for this immune activation involves interactions with TLR5, which has not previously been demonstrated for any recombinant FliC fusion protein.
Resumo:
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.
Resumo:
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.