63 resultados para upstream activator sequence
Resumo:
Bacillus thuringiensisis a ubiquitous Gram-positive and sporulating bacterium. Its crystals and secreted toxins are useful tools against larvae of diverse insect orders and, as a consequence, an alternative to recalcitrant chemical insecticides. We report here the draft genome sequence ofB. thuringiensis147, a strain isolated from Brazil and with high insecticidal activity. The assembled genome contained 6,167,994 bp and was distributed in seven replicons (a chromosome and 6 plasmids). We identified 12 coding regions, located in two plasmids, which encode insecticidal proteins.
Resumo:
Klebsiella pneumoniae U25 is a multidrug resistant strain isolated from a tertiary care hospital in Chennai, India. Here, we report the complete annotated genome sequence of strain U25 obtained using PacBio RSII. This is the first report of the whole genome of K. pneumoniaespecies from Chennai. It consists of a single circular chromosome of size 5,491,870-bp and two plasmids of size 211,813 and 172,619-bp. The genes associated with multidrug resistance were identified. The chromosome of U25 was found to have eight antibiotic resistant genes [blaOXA-1,blaSHV-28, aac(6’)1b-cr,catB3, oqxAB, dfrA1]. The plasmid pMGRU25-001 was found to have only one resistant gene (catA1) while plasmid pMGRU25-002 had 20 resistant genes [strAB, aadA1,aac(6’)-Ib, aac(3)-IId,sul1,2, blaTEM-1A,1B,blaOXA-9, blaCTX-M-15,blaSHV-11, cmlA1, erm(B),mph(A)]. A mutation in the porin OmpK36 was identified which is likely to be associated with the intermediate resistance to carbapenems in the absence of carbapenemase genes. U25 is one of the few K. pneumoniaestrains to harbour clustered regularly interspaced short palindromic repeats (CRISPR) systems. Two CRISPR arrays corresponding to Cas3 family helicase were identified in the genome. When compared to K. pneumoniaeNTUHK2044, a transposase gene InsH of IS5-13 was found inserted.
Resumo:
The complete genome sequence of bovine papillomavirus 2 (BPV2) from Brazilian Amazon Region was determined using multiple-primed rolling circle amplification followed by Illumina sequencing. The genome is 7,947 bp long, with 45.9% GC content. It encodes seven early (E1, E2,E4, E5, E6,E7, and E8) and two late (L1 and L2) genes. The complete genome of a BPV2 can help in future studies since this BPV type is highly reported worldwide although the lack of complete genome sequences available.
Resumo:
The Papaya ringspot virus (PRSV) coat protein transgene present in 'Rainbow' and 'SunUp' papayas disclose high sequence similarity (>89%) to the cp gene from PRSV BR and TH. Despite this, both isolates are able to break down the resistance in 'Rainbow', while only the latter is able to do so in 'SunUp'. The objective of this work was to evaluate the degree of sequence similarity between the cp gene in the challenge isolate and the cp transgene in transgenic papayas resistant to PRSV. The production of a hybrid virus containing the genome backbone of PRSV HA up to the Apa I site in the NIb gene, and downstream from there, the sequence of PRSV TH was undertaken. This hybrid virus, PRSV HA/TH, was obtained and used to challenge 'Rainbow', 'SunUp', and an R2 population derived from line 63-1, all resistant to PRSV HA. PRSV HA/TH broke down the resistance in both papaya varieties and in the 63-1 population, demonstrating that sequence similarity is a major factor in the mechanism of resistance used by transgenic papayas expressing the cp gene. A comparative analysis of the cp gene present in line 55-1 and 63-1-derived transgenic plants and in PRSV HA, BR, and TH was also performed.
Resumo:
The objective of this work was to identify expressed simple sequence repeats (SSR) markers associated to leaf miner resistance in coffee progenies. Identification of SSR markers was accomplished by directed searches on the Brazilian Coffee Expressed Sequence Tags (EST) database. Sequence analysis of 32 selected SSR loci showed that 65% repeats are of tetra-, 21% of tri- and 14% of dinucleotides. Also, expressed SSR are localized frequently in the 5'-UTR of gene transcript. Moreover, most of the genes containing SSR are associated with defense mechanisms. Polymorphisms were analyzed in progenies segregating for resistance to the leaf miner and corresponding to advanced generations of a Coffea arabica x Coffea racemosa hybrid. Frequency of SSR alleles was 2.1 per locus. However, no polymorphism associated with leaf miner resistance was identified. These results suggest that marker-assisted selection in coffee breeding should be performed on the initial cross, in which genetic variability is still significant.
Resumo:
The objective of this work was to standardize a semiautomated method for genotyping soybean, based on universal tail sequence primers (UTSP), and to compare it with the conventional genotyping method that uses electrophoresis in polyacrylamide gels. Thirty soybean cultivars were genotypically characterized by both methods, using 13 microsatellite loci. For the UTSP method, the number of alleles (NA) was 50 (2-7 per marker) and the polymorphic information content (PIC) ranged from 0.40 to 0.74. For the conventional method, the NA was 38 (2-5 per marker) and the PIC varied from 0.39 to 0.67. The genetic dissimilarity matrices obtained by the two methods were highly correlated with each other (0.8026), and the formed groups were coherent with the phenotypic data used for varietal registration. The 13 markers allowed the distinction of all analyzed cultivars. The low cost of the UTSP method, associated with its high accuracy, makes it ideal for the characterization of soybean cultivars and for the determination of genetic purity.
Resumo:
Two Brazilian Potato virus Y (PVY) isolates were biologically characterized as necrotic (PVY-NBR) and common (PVY-OBR) based upon symptoms on test plants. Additional characterization was performed by sequencing a cDNA corresponding to the 3' terminal region of the viral genome. The sequence consisted of 195 nucleotides (nt) coding part of the nuclear inclusion body b (NIb) gene, 804 nt of the coat protein (CP) gene, and 328 nt (PVY-OBR) or 326 nt (PVY-NBR) of the 3'-untranslated region (UTR). Translation of the sequence resulted in one single open reading frame with part of the NIb and a CP of 267 amino acids. The two isolates shared 95.1% similarity in the CP amino acid sequence. The CP and the 3'-UTR sequence of the Brazilian isolates were compared to those of other PVY isolates previously reported and unrooted phylogenetic trees were constructed. The trees revealed a separation of two distinct clusters, one comprising most of the common strains and the other comprising the necrotic strains. PVY-OBR was clustered in the common group and PVY-NBR in the necrotic one.
Resumo:
Apple stem grooving virus (ASGV) is one of the most important viruses infecting fruit trees. This study aimed at the molecular characterization of ASGV infecting apple (Malus domestica) plants in Santa Catarina (SC). RNA extracted from plants infected with isolate UV01 was used as a template for RT-PCR using specific primers. An amplified DNA fragment of 755 bp was sequenced. The coat protein gene of ASGV isolate UV01 contains 714 nucleotides, coding for a protein of 237 amino acids with a predicted Mr of approximately 27 kDa. The nucleotide and the deduced amino acid sequences of the coat protein gene showed identities of 90.9% and 97.9%, respectively, with a Japanese isolate of ASGV. Very high amino acid homologies (98.7%) were also found with Citrus tatter leaf capillovirus (CTLV), a very close relative of ASGV. These results indicate low coat protein gene variability among Capillovirus isolates from distinct regions. In a restricted survey, mother stocks in orchards and plants introduced into the country for large scale fruit production were indexed and shown to be infected by ASGV (20%), usually in a complex with other (latent) apple viruses (80%).
Resumo:
Plants of Senna occidentalis (sin. Cassia occidentalis) with mosaic symptoms were collected near a soybean (Glycine max) field where some plants exhibited symptoms of mosaic and blistering. A preliminary examination of leaf tissue from diseased S. occidentalis by electron microscopy revealed the presence of pinwheel inclusions as well as long flexuous particles, indicating the presence of a potyvirus. Host range, serology, and amino acid sequence from this potyvirus were similar to those from other Brazilian isolates of Soybean mosaic virus (SMV). The 3'- terminal region of the genomic RNA was cloned and a cDNA sequence of 1.9 kb upstream of the poly (A) tract was determined. The sequence contains a single open reading frame and a 3'- non-translated region (NTR) of 259 bp. The nucleotide sequence of the CP gene of SMV-Soc was 98% identical to that of Brazilian isolates SMV-B, SMV-L, and SMV-FT10. The percentage of nucleotide identity of their 3'-NTR's was 91, 98, and 99% in relation to SMV-L, SMV-B, and SMV-FT10, respectively. In contrast to other Brazilian SMV isolates studied, SMV-Soc was able to infect sunflower (Helianthus annuus). Based on these results, the S. occidentalis isolate was identified as a new strain of SMV belonging to the SMV strain, group G5 and was named SMV-Soc. This is the first report of naturaly occurring SMV infecting plants of S. occidentalis in Brazil, adding this weed as a new source of SMV in the field.
Resumo:
Reverse transcriptase (RT) sequence analysis is an important technique used to detect the presence of transposable elements in a genome. Putative RT sequences were analyzed in the genome of the pathogenic fungus C. perniciosa, the causal agent of witches' broom disease of cocoa. A 394 bp fragment was amplified from genomic DNA of different isolates of C. perniciosa belonging to C-, L-, and S-biotypes and collected from various geographical areas. The cleavage of PCR products with restriction enzymes and the sequencing of various RT fragments indicated the presence of several sequences showing transition events (G:C to A:T). Southern blot analysis revealed high copy numbers of RT signals, forming different patterns among C-, S-, and L-biotype isolates. Sequence comparisons of the predicted RT peptide indicate a close relationship with the RT protein from thegypsy family of LTR-retrotransposons. The possible role of these retrotransposons in generating genetic variability in the homothallic C. perniciosa is discussed.
Resumo:
Lettuce big vein associated virus (LBVaV) and Mirafiori lettuce big vein virus (MLBVV) have been found in mixed infection in Brazil causing the lettuce big vein disease. Analysis of part of the coat protein (CP) gene of Brazilian isolates of LBVaV collected from lettuce, showed at least 93% amino acid sequence identity with other LBVaV isolates. Genetic diversity among MLBVV CP sequences was higher when compared to LBVaV CP sequences, with amino acid sequence identity ranging between 91% to 100%. Brazilian isolates of MLBVV belong to subgroup A, with one RsaI restriction site on the coat protein gene. There is no indication for a possible geografical origin for the Brazilian isolates of LBVaV and MLBVV.
Resumo:
The clonal relationship among avian Escherichia coli strains and their genetic proximity with human pathogenic E. coli, Salmonela enterica, Yersinia enterocolitica and Proteus mirabilis, was determined by the DNA sequencing of the conserved 5' and 3'regions fliC gene (flagellin encoded gene). Among 30 commensal avian E. coli strains and 49 pathogenic avian E. coli strains (APEC), 24 commensal and 39 APEC strains harbored fliC gene with fragments size varying from 670bp to 1,900bp. The comparative analysis of these regions allowed the construction of a dendrogram of similarity possessing two main clusters: one compounded mainly by APEC strains and by H-antigens from human E. coli, and another one compounded by commensal avian E. coli strains, S. enterica, and by other H-antigens from human E. coli. Overall, this work demonstrated that fliC conserved regions may be associated with pathogenic clones of APEC strains, and also shows a great similarity among APEC and H-antigens of E. coli strains isolated from humans. These data, can add evidence that APEC strains can exhibit a zoonotic risk.
Resumo:
A neurotoxic peptide, granulitoxin (GRX), was isolated from the sea anemone Bunodosoma granulifera. The N-terminal amino acid sequence of GRX is AKTGILDSDGPTVAGNSLSGT and its molecular mass is 4958 Da by electrospray mass spectrometry. This sequence presents a partial degree of homology with other toxins from sea anemones such as Bunodosoma caissarum, Anthopleura fuscoviridis and Anemonia sulcata. However, important differences were found: the first six amino acids of the sequence are different, Arg-14 was replaced by Ala and no cysteine residues were present in the partial sequence, while two cysteine residues were present in the first 21 amino acids of other toxins described above. Purified GRX injected ip (800 µg/kg) into mice produced severe neurotoxic effects such as circular movements, aggressive behavior, dyspnea, tonic-clonic convulsion and death. The 2-h LD50 of GRX was 400 ± 83 µg/kg.
Resumo:
We have shown that tissue-type plasminogen activator (tPA) and plasma kallikrein share a common pathway for liver clearance and that the hepatic clearance rate of plasma kallikrein increases during the acute-phase (AP) response. We now report the clearance of tPA from the circulation and by the isolated, exsanguinated and in situ perfused rat liver during the AP response (48-h ex-turpentine treatment). For the sake of comparison, the hepatic clearance of a tissue kallikrein and thrombin was also studied. We verified that, in vivo, the clearance of 125I-tPA from the circulation of turpentine-treated rats (2.2 ± 0.2 ml/min, N = 7) decreases significantly (P = 0.016) when compared to normal rats (3.2 ± 0.3 ml/min, N = 6). The AP response does not modify the tissue distribution of administered 125I-tPA and the liver accounts for most of the 125I-tPA (>80%) cleared from the circulation. The clearance rate of tPA by the isolated and perfused liver of turpentine-treated rats (15.5 ± 1.3 µg/min, N = 4) was slower (P = 0.003) than the clearance rate by the liver of normal rats (22.5 ± 0.7 µg/min, N = 10). After the inflammatory stimulus and additional Kupffer cell ablation (GdCl3 treatment), tPA was cleared by the perfused liver at 16.2 ± 2.4 µg/min (N = 5), suggesting that Kupffer cells have a minor influence on the hepatic tPA clearance during the AP response. In contrast, hepatic clearance rates of thrombin and pancreatic kallikrein were not altered during the AP response. These results contribute to explaining why the thrombolytic efficacy of tPA does not correlate with the dose administered.