92 resultados para trap surface area
Resumo:
This paper reviews the most important methods used to characterize the porosity of styrene-divinylbenzene resins. Methods such as adsorption of nitrogen for determination of surface area and mercury intrusion porosimetry for characterization of pore size distribution are related.
Resumo:
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m² g-1, for pure TiO2, to 87 m² g-1 for 9wt.% of V2O5. The rutile form is predominant for pure TiO2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.
Resumo:
In this work we obtained microporous and mesoporous silica membranes by sol-gel processing. Tetraethylortosilicate (TEOS) was used as precursor. Nitric acid was used as catalyst. In order to study the affect of N,N-dimethylformamide (NDF) as drying additive, we used a molar ratio TEOS/NDF of 1/3. The performance of N,N-dimethylformamide was evaluated through monolithicity measurements. The structural evolutions occurring during the sol-gel transition and in the interconnected network of the membranes during thermal treatment were monitored by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses and nitrogen sorption. We noted that in the presence of N,N-dimethylformamide, polymerization goes through a temporary stabilization of oligomers. The Si-O(H) bonds are stronger and belong to a more cross-linked structure for the N,N-dimethylformamide containing sol. The membranes obtained in the presence of N,N-dimethylformamide have larger surface area and its pore structure is in the range of mesoporous. The membranes obtained without additive have pore structure in the range of microporous.
Resumo:
The carbon dioxide reforming of methane was carried out over nickel catalysts supported on the gamma-Al2O3/CeO2 system prepared by wet impregnation. With the increase of the CeO2 weight in the catalyst, a higher stability was observed in the catalytic activity, together with an excellent resistance to carbon deposition and a better Ni dispersion. The catalysts were characterized by means of surface area measurements, TPR, H2 chemisorption, XRD, SEM, EDX, XPS and TEM. An interaction between Ni and CeO2 was observed to the Ni/CeO2 sample after activation in a H2 atmosphere above 300 ºC. Such behavior has a significantly influence on the catalytic activity.
Resumo:
An overview about the role of alkoxides in the most recent uses of the sol-gel process in the synthesis of new materials is presented. Special attention is focused on the uses of silicon, aluminum, zirconium and titanium alkoxides. This review shows that the alkoxides enable the synthesis of new matrices with controlled surface area, acidity and porosity, as well as some unusual properties. The property associated with the solubility of metal alkoxides opens enormous possibilities of combining them for the synthesis films of powders with a very large range of metal compositions.
Resumo:
Direct decomposition of NO on copper supported on zeolite catalysts such as MCM-22 and Beta was compared with that on the thoroughly studied Cu-ZSM-5. The catalysts were prepared by ion-exchange in basic media. They were characterized by atomic absorption, surface area, nitrogen adsorption at 77K, X-ray diffraction and temperature programmed reduction. The products of the reaction were analyzed by Fourier transform infrared spectroscopy using a gas cell. Catalytic activity tests indicated that zeolite catalysts, like Beta and MCM-22, lead to NO conversion values comparable to ZSM-5.
Resumo:
Ethylbenzene dehydrogenation in the presence of steam is the main commercial route to produce styrene. The industrial catalyst is chromium and potassium-doped hematite, which easily deactivates with time due to potassium loss. In order to find non-toxic and potassium free catalysts, the promoter action of zinc on hematite was studied in this work. It was found that zinc acts as structural promoter by stabilizing the Fe3+ species (active phase) as maghemite. Although it decreases the specific surface area, it increases four times the catalytic activity as compared to hematite.
Resumo:
Fuel cells are attracting much interest as efficient and clean energy conversion devices. The main components of low temperature fuel cells are the electrocatalysts used to promote the anodic and cathodic reactions, which are based on platinum and platinum alloys. These electrocatalysts are normally prepared in the form of metal nanoparticles supported on a conductive material, usually high surface area carbon, to improve catalyst utilization and reduce cost. This work presents and comments some methods used presently to produce these electrocatalysts. The performances of the produced electrocatalysts are compared to that of state-of-the-art commercial E-TEK electrocatalysts.
Resumo:
The effect of chromium on the catalytic properties of MCM-41 was evaluated in order to develop new catalysts for the trimethylbenzene transalkylation with benzene to produce ethylbenzene, a high-value aromatic in the industry. It was found that chromium decreases the specific surface area but increases the acidity, turning MCM-41 into an active and selective catalyst for ethylbenzene and toluene production. The coke produced on the catalyst is hydrogenated and mainly located outside the pores and thus can be easily removed. The catalyst is more active and selective than mordenite, a commercial catalyst, and thus more promising for commercial applications.
Resumo:
The alpha-zirconium (IV) hydrogenphosphate (alpha-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on alpha-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11µ) with different sizes and shapes were produced.
Resumo:
This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG), surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m² g-1. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties.
Resumo:
Montmorillonite clay from Brazil was pillared with aluminium polyhydroxications. The influence of aging of the pillaring solution and the concentration of the clay suspension on the properties of the prepared materials was studied. The materials were characterized by chemical analysis, XRD and pore analysis by N2 adsorption. The catalytic properties were evaluated in the cumene cracking reaction. Results showed that the pillarization process increases the basal spaces of natural clay from 9.7 to 18.5 Å and the surface area from 41 to 300 m²/g.
Resumo:
A comparison between silica by acid leaching of rice husk (RH) and silica obtained from thermal treatment of rice husk ash (RHA) is presented. The best leaching results were obtained using 10% hydrochloric acid followed by washing with water. The alternative method, calcination of RHA at 700 ºC for 6 h followed by grinding for 80 min, was more effective. Silica obtained from RH was about 97% amorphous, had a 17.37 µm mean particle size, and a specific surface area of 296 m²/g. On the other hand, for silica obtained from RHA the values were about 95% amorphous material 0.68 µm, and 81 m²/g.
Resumo:
The present study describes phenol adsorption on commercial active carbon (CAF) under alkaline conditions in the concentration range of 0.01 to 2.08 mmol L-1. Surface characterization has been performed by means of surface area measurements, IR spectroscopy and Boehm titration. The effect of temperature on the adsorption equilibrium isotherm was investigated at 23, 30, 40, 50 and 60 °C. The results showed that adsorption capacity decreased with increasing temperature. The adsorption kinetics and the role of surface characteristics on the adsorption of phenol also discussed.
Resumo:
Nb-substituted goethites have been prepared and characterized by Mössbauer spectroscopy, XRD, SEM and BET surface area measurements. Mössbauer and XRD analyses suggested that Nb replaces Fe3+ in the structure with duplet formation. The insertion of Nb into the goethite structure caused a significant increase in the BET surface area of the material. The prepared alpha-Fe1-xNb xOOH was investigated for the H2O2 decomposition to O2 and for the Fenton reaction to oxidize the dye methylene blue. It was observed that the introduction of Nb in to goethite produced a strong increase in the activity of oxidation of the dye contaminant by H2O2.