34 resultados para structure based alignments
Resumo:
One dune habitat in the semi-arid Caatinga Biome, rich in endemisms, is described based on plant species composition, woody plant density, mean height and phenology and a multivariate analysis of the micro-habitats generated by variables associated to plants and topography. The local flora is composed mainly by typically sand-dweller species of Caatinga, suggesting the existence of a phytogeographic unity related to the sandy areas in the Caatinga biome, which seems to be corroborated by faunal distribution. Moreover, some species are probably endemic from the dunes, a pattern also found in vertebrates. The plant distribution is patchy, there is no conspicuous herbaceous layer and almost 50% of the ground represents exposed sand. Phenology is not synchronized among species, occurring leaves budding and shedding, flowers development and anthesis, fruits production and dispersion both in rainy and dry seasons. Leaf shedding is low compared to the level usually observed in Caatinga areas and about 50% of the woody individuals were producing leaves in both seasons. Spectrum of dispersal syndromes shows an unexpected higher proportion of zoochorous species among the phanerophytes, accounting for 31.3% of the species, 78.7% of the total frequency and 78.6% of the total density. The habitat of the dunes is very simple and homogeneous in structure and most of environmental variance in the area is explained by one gradient of woody plants density and another of increase of Bromelia antiacantha Bertol. (Bromeliaceae) and Tacinga inamoena (K. Schum.) N.P. Taylor & Stuppy (Cactaceae) toward valleys, which seem to determine two kinds of protected micro-habitats for the small cursorial fauna.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAca2®3Galß1®4[Fuca1®3]GlcNAcß1®R). In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.
Resumo:
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.
Resumo:
In the present review, we describe a systematic study of the sulfated polysaccharides from marine invertebrates, which led to the discovery of a carbohydrate-based mechanism of sperm-egg recognition during sea urchin fertilization. We have described unique polymers present in these organisms, especially sulfated fucose-rich compounds found in the egg jelly coat of sea urchins. The polysaccharides have simple, linear structures consisting of repeating units of oligosaccharides. They differ among the various species of sea urchins in specific patterns of sulfation and/or position of the glycosidic linkage within their repeating units. These polysaccharides show species specificity in inducing the acrosome reaction in sea urchin sperm, providing a clear-cut example of a signal transduction event regulated by sulfated polysaccharides. This distinct carbohydrate-mediated mechanism of sperm-egg recognition coexists with the bindin-protein system. Possibly, the genes involved in the biosynthesis of these sulfated fucans did not evolve in concordance with evolutionary distance but underwent a dramatic change near the tip of the Strongylocentrotid tree. Overall, we established a direct causal link between the molecular structure of a sulfated polysaccharide and a cellular physiological event - the induction of the sperm acrosome reaction in sea urchins. Small structural changes modulate an entire system of sperm-egg recognition and species-specific fertilization in sea urchins. We demonstrated that sulfated polysaccharides - in addition to their known function in cell proliferation, development, coagulation, and viral infection - mediate fertilization, and respond to evolutionary mechanisms that lead to species diversity.