42 resultados para stannous fluoride
RESSONÂNCIA MAGNÉTICA NUCLEAR DE SUBSTÂNCIAS ORGANOFLUORADAS: UM DESAFIO NO ENSINO DE ESPECTROSCOPIA
Resumo:
Nuclear magnetic resonance is a technique that is widely used for elucidating and characterizing organic substances. Organofluorine substances have applications in many areas from drugs to liquid crystals, but their NMR spectra are often challenging due to fluoride coupling with other nuclei. For this reason, NMR spectra of this class of substances are not commonly covered in undergraduate and graduate chemistry courses and related fields. Thus, the aim of this work was the presentation and discussion of 1H, 13C, and 19F NMR spectra of eleven organofluorine substances which, in the case of 1H and 13C nuclei, showed classic patterns of first-order coupling and the effects of the fluorine nucleus in different chemical and magnetic environments. In addition, the observation of long distance coupling constants was possible through the use of apodization functions in the processing of the spectra. It is expected that the examples presented herein can be utilized and discussed in undergraduate and graduate NMR spectroscopy disciplines and thus improve the teaching and future research of organofluorine compounds.
Resumo:
2015 is the Year of Light, according to UNESCO. Chemistry has a close relationship with light and one of the materials that allows such synergy is glass. Depending on the chemical composition of the glass, it is possible to achieve technological applications for the whole range of wavelengths extending from the region of the microwave to gamma rays. This diversity of applications opens a large range of research where chemistry, as a central science, overlaps the fields of physics, engineering, medicine, etc., generating a huge amount of knowledge and technological products used for humanity. This review article aimed at discussing some families of glasses, illustrating some applications. Due to the extension of the theme, and all points raised, we thought it would be good to divide the article into two parts. In the first part we focus on the properties of heavy metal oxide glasses, fluoride glasses and chalcogenide glasses. In the second part we emphasize the properties of glassy thin films prepared by sol-gel methodology and some applications, of both glasses as the films in photonics, and more attention was given to the nonlinear properties and uses of photonic fibers.
Resumo:
Os objetivos deste trabalho foram: caracterizar os efeitos do flúor em espécies arbóreas nativas, nos estádios de plântula e muda; identificar injúrias provocadas pelo flúor na estrutura da lâmina foliar da espécie mais sensível; fornecer subsídios para seleção de características a serem utilizadas na bioindicação e contribuir com informações sobre a resistência ou tolerância das plantas, visando ao reflorestamento de áreas impactadas pela chuva com flúor. As espécies analisadas foram Gallesia gorazema Moq. (Phytolaccaceae), Genipa americana L. (Rubiaceae), Joannesia princeps Vell. (Euphorbiaceae), Peltophorum dubium (Spreng.) Taub. (Leguminosae, Caesalpinioideae) e Spondias dulcis Forst. f. (Anacardiaceae). Plântulas e mudas dessas espécies, provenientes do Parque Estadual do Rio Doce (MG), foram submetidas a 20 min diários de chuva com flúor (30 mg.L-1), por 10 dias consecutivos. Necroses apicais e marginais foram observadas em todas as espécies analisadas, logo após a primeira chuva simulada. S. dulcis, no estádio de muda, foi a espécie mais sensível ao flúor, pois apresentou extensas necroses com apenas dois dias de tratamento, enquanto que G. americana foi a espécie mais resistente. Nas mudas, as espécies que acumularam mais flúor foram também as que apresentaram maior sensibilidade a esse poluente; essa relação não foi verificada nas plântulas. A concentração de flúor utilizada promoveu alterações drásticas na lâmina foliar de S. dulcis com extensas áreas necrosadas, danificando toda a sua estrutura anatômica. A sensibilidade ao flúor observada em S. dulcis indica que essa espécie apresenta potencial para ser usada como bioindicadora. Entretanto, estudos detalhados serão necessários para a melhor caracterização das respostas de S. dulcis ao flúor visando a sua utilização em programas de biomonitoramento ambiental.
Resumo:
The effects of methylmercury (MeHg) on histochemical demonstration of the NADPH-diaphorase (NADPH-d) activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1) and the other animals were perfused 6 months later (group 2). After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80). Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg) in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05). These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.
Resumo:
Eighty micrograms red blood cell (RBC) ghosts from patients who had previously exhibited the cutaneous form of loxoscelism (presenting localized dermonecrosis) and the viscerocutaneous form of loxoscelism (presenting dermonecrosis, hemoglobinuria, hematuria, and jaundice) and from controls were incubated with 2.5 µg crude Loxosceles gaucho venom in 5 mM phosphate buffer, pH 7.4, at 37ºC. Among all membrane proteins, quantitative proteolysis of the important integral transmembrane protein 3 increased with venom dose and with incubation time from 30 to 120 min, as demonstrated by gel densitometry. Similar quantitative data were obtained for RBC ghosts from patients and from control subjects, a fact that argues against the possibility of genetic factors favoring the hemolytic viscerocutaneous form. These data suggest that the clinical forms may be different types of the same disease, with the viscerocutaneous form being the result of large amounts of intravascularly injected venom and the superficial form being the result of in situ venom action. Since protein 3 is a housekeeping integral membrane protein, whose genetic deficiency leads to hemolytic anemia, it is reasonable to relate it to the hemolysis which occurs in the viscerocutaneous form of loxoscelism. The venom protease responsible for the process was not inhibited after 120-min incubation by 0.2 mM paramethylsulfonyl fluoride or by 0.2 mM N-ethylmaleimide but was inhibited by 25 mM ethylenediaminetetraacetic acid (a calcium-chelating agent) in 5 mM phosphate buffer at pH 7.4, which suggests that the enzyme is a calcium-dependent metalloprotease.
Resumo:
The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.
Resumo:
A continuous assay using internally quenched fluorescent peptides with the general sequence Abz-peptidyl-(Dnp)P-OH (Abz = ortho-aminobenzoic acid; Dnp = 2,4-dinitrophenyl) was optimized for the measurement of angiotensin I-converting enzyme (ACE) in human plasma and rat tissues. Abz-FRK(Dnp)P-OH, which was cleaved at the Arg-Lys bond by ACE, was used for the enzyme evaluation in human plasma. Enzymatic activity was monitored by continuous recording of the fluorescence (lambdaex = 320 nm and lambdaem = 420 nm) at 37ºC, in 0.1 M Tris-HCl buffer, pH 7.0, with 50 mM NaCl and 10 µM ZnCl2. The assays can be performed directly in the cuvette of the fluorimeter and the hydrolysis followed for 5 to 10 min. ACE measurements in the plasma of 80 healthy patients with Hip-His-Leu and with Abz-FRK(Dnp)P-OH correlated closely (r = 0.90, P < 0.001). The specificity of the assay was demonstrated by the complete inhibition of hydrolysis by 0.5 µM lisinopril or captopril. Abz-FRK(Dnp)P-OH cleavage by ACE was monitored in rat lung, kidney, heart, and liver homogenates in the presence of a cocktail of inhibitors containing trans-epoxy-succinyl-L-leucylamido-(4-guanido)-butene, pepstatin, phenyl-methylsulfonyl fluoride, N-tosyl-L-phenylalanyl-chloromethyl ketone, and N-tosyl-lysyl-chloromethyl ketone to prevent undesirable hydrolysis. ACE activity in lung, heart and kidney homogenates, but not in liver homogenates, was completely abolished by 0.5 µM lisinopril or captopril. The advantages of the method are the procedural simplicity and the high sensitivity providing a rapid assay for ACE determinations.
Resumo:
The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis) was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis) was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.
Resumo:
The distribution of creatinine, one of the toxic guanidine compounds, in various tissues has not been studied in detail by using radiolabeled creatinine. Our objective was to investigate the biodistribution of creatinine labeled with 99m technetium (99mTc) by the stannous (II) chloride method in healthy male Wistar rats. Quality controls were carried out by radio thin layer chromatography, high-performance liquid chromatography, and paper electrophoresis. The labeling yield was 85 ± 2% under optimum conditions (pH 7 and 100 µg stannous chloride). Rats (N = 12) were injected intravenously with 99mTc-creatinine and their blood and visceral organs were evaluated for 99mTc-creatinine uptake as percent of the injected dose per gram wet weight of each tissue (%ID/g). The lowest amount of uptake was detected in the brain and testis. When the rate of uptake was evaluated, only the kidney showed increasing rates of uptake of 99mTc-creatinine throughout the study. Kidneys showed the highest amount of uptake throughout the study (P < 0.001 compared to all other organs), followed by liver, spleen and lung tissue.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
There are several obstacles to the use of chymosin in cheese production. Consequently, plant proteases have been studied as possible rennet substitutes, but most of these enzymes are unsuitable for the manufacture of cheese. The aim of this study was to evaluate the potential of latex from Sideroxylon obtusifolium as a source of milk-clotting proteases and to partially characterize the enzyme. The enzyme extract showed high protease and coagulant activities, with an optimal pH of 8.0 and temperature of 55 °C. The enzyme was stable in wide ranges of temperature and pH. Its activity was not affected by any metal ions tested; but was inhibited by phenylmethanesulfonyl fluoride and pepstatin. For the coagulant activity, the optimal concentration of CaCl2 was 10 µmol L- 1. Polyacrylamide gel electrophoresis showed four bands, with molecular weights between 17 and 64 kDa. These results indicate that the enzyme can be applied to the cheese industry.
Resumo:
Ultrafiltration (UF) inhibits the enzymatic activity which is responsible for color changes of coconut water without the need for heat treatment. In the present study, UF performance in terms of the permeate flux and enzymatic retention of the coconut water was evaluated at laboratory unit (LU) and pilot unit (PU). The membranes studied were polyethersulfone 150 kDa (UP150), polyvinylidene fluoride 150 kDa (UV150) and cellulose 30 kDa (UC030). The UP150 membrane showed the best permeate flux. The UC030 membrane showed the lowest flux, but it resulted in 100% enzymatic retention, while the other membranes showed enzymatic retentions between 71 and 85%. The application of the UC030 in the pilot unit (PU) resulted in a flux value higher than that obtained in the LU due to the tangential velocity effect. The UC030 membrane has proved adequate for industrial applications.