50 resultados para sponge, luciferase, cloning, Suberites
Resumo:
Context and objective:The molecular characterization of local isolates of Toxoplasma gondii is considered significant so as to assess the homologous variations between the different loci of various strains of parasites.Design and setting:The present communication deals with the molecular cloning and sequence analysis of the 1158 bp entire open reading frame (ORF) of surface antigen 3 (SAG3) of two Indian T. gondii isolates (Chennai and Izatnagar) being maintained as cryostock at the IVRI.Method:The surface antigen 3 (SAG3) of two local Indian isolates were cloned and sequenced before being compared with the available published sequences.Results:The sequence comparison analysis revealed 99.9% homology with the standard published RH strain sequence of T. gondii. The strains were also compared with other established published sequences and found to be most related to the P-Br strain and CEP strain (both 99.3%), and least with PRU strain (98.4%). However, the two Indian isolates had 100% homology between them.Conclusion:Finally, it was concluded that the Indian isolates were closer to the RH strain than to the P-Br strain (Brazilian strain), the CEP strain and the PRU strains (USA), with respect to nucleotide homology. The two Indian isolates used in the present study are known to vary between themselves, as far as homologies related to other genes are concerned, but they were found to be 100% homologous as far as SAG3 locus is concerned. This could be attributed to the fact that this SAG3 might be a conserved locus and thereby, further detailed studies are thereby warranted to exploit the use of this particular molecule in diagnostics and immunoprophylactics. The findings are important from the point of view of molecular phylogeny.
Resumo:
Single organisms of Trypanosoma cruzi of the virulent Peru strain were isolated by direct visualisation and were injected peritoneally into CFI mice. Single trypanomastigotes of different morphology and from different sources (mouse blood, in vitro cufture and bug faeces) were used. Single trypanomastigotes from mouse blood caused parasitaemia and fataiity in a high percentage of mice. This was true irrespective of the morphology (broad or narrow form) of the trypano mastigo tec. Single organisms of the culture forms were also capable of causing infection, although these were less infectious than single trypanomastigotes obtained from mouse blood or the reduviid bug. The difficulties attendant on the performance of the cloning technique are discussed and some indication is given of how these problems can be overcome.
Resumo:
Introduction This work presents the initial findings of a molecular epidemiological investigation of Trypanosoma cruzi in triatomine insects in State of Mato Grosso do Sul. Methods A total of 511 triatomines from different regions of the state were examined. Deoxyribonucleic acid (DNA) was extracted from the intestinal contents of the insects using phenol-chloroform-isoamyl alcohol (25:24:1). Polymerase chain reaction (PCR) using primers 121/122 targeting DNA kinetoplast (kDNA) was then performed to identify T. cruzi, and positive samples were subjected to PCR using the primer pair TcSC5D-F/R followed by restriction fragment length polymorphism (RFLP) with the restriction enzymes SphI and HpaI (1 U/reaction), cloning and sequencing. Results One hundred samples were positive for T. cruzi, and three discrete typing units (DTUs) were identified (TcI, TcII, and TcBat). Triatoma sordida had the highest T. cruzi occurrence (83.3%), and DTUs were found in three samples: 58.3% of the samples were TcI, 33.3% were TcII and 8.3% were TcBat. There was a clear geographical distribution of the DTUs throughout the state, with TcI, TcII and TcBat located in the center, TcI located in the east, and TcII located in the west. Conclusions This study showed the occurrence of overlapping DTUs in State of Mato Grosso do Sul. The distributions of the DTUs were different, with TcI, TcII and TcBat in the center of the state, TcI predominantly in the east, and TcII in the west. Further studies may reveal a more defined mosaic distribution of DTUs in MS.
Resumo:
Surveys for freshwater sponges were performed at several water bodies at sandy environments along a north-south direction of particularly the Brazilian coastal line. The results allowed for the distinction of four different species-specific environments along this coastal border. The main fact considered was the dominant or the sole recurrent occurrence of a single sponge species at one particular habitat. The first one is that of the lagoonal mesohaline habitats at the tropical and subtropical realms, indicated by Spongilla alba Carter, 1849. The second one refers to shallow ponds among dunes at the tropical area indicated by Corvoheteromeyenia heterosclera (Ezcurra de Drago, 1974). The third one is that of also shallow ponds close to the dune belt at the temperate region indicated by Racekiela sheilae (Volkmer-Ribeiro, De Rosa-Barbosa & Tavares, 1988). The fourth one is that of organically enriched environments, at the marginal areas of lagoons and mouth of small rivers, evolving towards freshwater muddy ponds and coastal swamps, not far from the ocean border: Ephydatia facunda Weltner, 1895 is the species to occupy this habitat with almost exclusiveness. The above species are thus proposed as indicators of such habitats and have their descriptions improved and that of their environments summarized. A taxonomic key based on the spicules of the four species is proposed. The results presented aim to contribute to the identification of spicules of these sponges in sediment columns recovered at the Brazilian and South American coastal area. Determination of paleo ocean borders are a present issue of upmost importance in what respects projections of timing and fluctuations of ascending/regressing sea levels.
Resumo:
The freshwater sponges Trochospongilla variabilis Bonetto & Ezcurra de Drago (1973), Radiospongilla crateriformis (Potts, 1882), Spongilla cenota Penney & Racek (1968) and Corvoheteromeyenia heterosclera (Ezcurra de Drago, 1974) compose with the sphaerid bivalve Eupera cubensis (Prime, 1865) and several Phylactolaemata bryozoans a benthic filter feeding community living in seasonal lentic and lotic habitats with high Particulate Organic Carbon (POC), low conductivity and acid pH within the Costa Rica Dry Forest biome. The sponge specimens gathered led to the re-description of the four species.
Resumo:
Inhibition of one Leishmania subspecies by exometabolites of another subspecies, a phenomenon not previously reported, is suggested by our recent observations in cell cloning experiments with Leishmania mexicana mexicana and Leishmania mexicana amazonensis. Clones were identified using the technique of schizodeme analysis. The phenomenon observed is clearly relevant to studies of parasite isolation, leishmanial metabolism, cross-immunity and chemotherapy.
Resumo:
Four Trypanosoma cruzi strains from zymodermes A, B, C and D were successively clonedon BHI-LIT-agar-blood BLAB). Twenty clones from the first generation (F1), 10 from The second (F2) and 4 from the third (F3) from the strains A138, B147 and C23 were isolated. The D150 strain provied 29 F1 and F2 clones. The strains and clones had their isoenzyme and K-DNA patterns determined. The clones from A138, Bl47 and C231 strains presented isoemzyme and K-DNA patterns identical between thewmselves and their respective parental strains. Therefore showing the homogenety and stability of isoenzyme and K-DNA patterns after successive cloning. The Dl50 strain from zymodeme D (ZD) showed heterogeneity. Twenty-eight out of 29 clones of the first generation were of zymodeme A and only one was of zymodeme C, confirming previous reports that ZD strains consisted of ZA and ZC parasite populations. The only D150 strain clone of zymodeme C showed a K-DNA pattern identical to its parental strain. The remining clones although similar among themselves were different from the parental strain. Thus the T. cruzi strains had either homonogeneus or heterogeneous populations. The clones produced by successive cloning provided genetically homonogeous populations. Their experimental use will make future results more reliable and reproducible.
Resumo:
Entamoeba histolytica, the protozoan parasite causing human amoebisis, has recently been found to comprise two genetically distinct forms, potentially pathogenic and constitutively nonpathogenic ones. Host tissue destruction by pathogenic forms is belived to result from cell functions mediaed by a lectin-type adherence receptor, a pore-forming peptide involved in host cell lysis, and abundant expression of cysteine proteinase(s). Isolation and molecular cloning of these amoeba products have provided the tools for structural analyses and manipulations of cell functions including comparisons between pathogenic and nonpathogenic forms.
Resumo:
Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.
Resumo:
Molecular cloning of components of protective antigenic preparations have suggested that related parasite fatty acid binding proteins could form the basis of the well documented protective, immune cross reactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. We have now confirmed the cross protective potential of parasite fatty acid binding proteins and suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni of veterinary and human importance respectively.
Resumo:
Here we have characterized Leishmania major (Friedlin) telomeric terminus (the very end) using recombinants obtained by a vector-adaptor cloning protocol. As in L. donovani, the last nine nucleotides of L. major terminus are 5'-GGTTAGGGT-OH 3', differing from Trypanosoma cruzi and T. brucei terminus 5'GGGTTAGGG-OH 3', thus indicating that these sequences are genus specific. We have also made a comparative analysis between L. major and L. donovani telomere-associated sequences, and described a novel non-repeated telomeric associated sequence common to L. major low molecular weight chromosomal bands.
Resumo:
We describe a streamlined reverse transcription-polymerase chain reaction methodology for constructing full-length cDNA libraries of trypanosomatids on the basis of conserved sequences located at the 5' and 3'ends of trans-spliced mRNAs. The amplified cDNA corresponded to full-length messengers and was amenable to in vitro expression. Fractionated libraries could be rapidly constructed in a plasmid vector by the TA cloning method (Invitrogen). We believe this is useful when there are concerns over the use of restriction enzymes and phage technology as well as in cases where expression of proteins in their native conformation is desired.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
Lutzomyia longipalpis females received single and mixed infections with Endotrypanum and Leishmania. Two biological parameters were analyzed: the percentage of infected females and the distribution of flagellates in the gut of the females. The principal comparisons were performed between (1) two strains of Endotrypanum, (2) cloned versus primary sample of one strain of Endotrypanum, (3) Endotrypanum versus Leishmania guyanensis, and (4) the pattern of flagellates behaviour by optical microscopy in females with single or mixed infection versus the identification of parasites isolated from digestive tracts by isoenzyme electrophoresis. Flagellates of Endotrypanum showed distinct patterns of infection suggesting that there is variation between and within strains. The distribution of Endotrypanum and L. guyanensis differed significantly in relation to the colonization of the stomodeal valve. In co-infection with L. guyanensis, a large number of flagellates were seen to be plentifully infecting the stomodeal valve in significantly more specimens than in females infected by Endotrypanum only. However, the electrophoretic profiles of isoenzymes of parasites recovered from all co-infected specimens corresponded to Endotrypanum. This suggests that the mere correlation sand fly infection-biochemical analysis of isolates may induce parasitological incorrect consideration.
Resumo:
Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.