35 resultados para spectral map
Resumo:
Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.
Resumo:
The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD) were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency) and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7) and the left (N = 6) side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.
Resumo:
The objective of the present study was to perform a spectral analysis of the electrical activity of the left colon of patients with hepatosplenic schistosomiasis. Thirty patients were studied, divided into 2 groups: group A was composed of 14 patients (9 males and 5 females) with hepatosplenic schistosomiasis and group B was composed of 16 female patients without schistosomiasis mansoni. Three pairs of electrodes were implanted in the left colon at the moment of the surgical treatment. The signals of the electric activity of the colon were captured after postoperative recovery from the ileus and fed into a computer by means of a DATAQ data collection system which identified and captured frequencies between 0.02 and 10 Hz. Data were recorded, stored and analyzed using the WINDAQ 200 software. For electrical analysis, the average voltage of the electrical wave in the three electrodes of all patients, expressed as millivolts (mV), was considered, together with the maximum and minimum values, the root mean square (RMS), the skewness, and the results of the fast Fourier transforms. The average RMS of the schistosomiasis mansoni patients was 284.007 mV. During a long period of contraction, the RMS increased in a statistically significant manner from 127.455 mV during a resting period to 748.959 mV in patients with schistosomiasis mansoni. We conclude that there were no statistically significant differences in RMS values between patients with schistosomiasis mansoni and patients without the disease during the rest period or during a long period of contraction.
Resumo:
The regulatory function of α1B-adrenoceptors in mammalian heart homeostasis is controversial. The objective of the present study was to characterize the expression/activity of key proteins implicated in cardiac calcium handling (Na+/K+-ATPase and Ca2+-ATPases) and growth (ERK1/2, JNK1/2 and p38) in mice with cardiac-selective overexpression of constitutively active mutant α1B-adrenoceptor (CAMα1B-AR), which present a mild cardiac hypertrophy phenotype. Immunoblot assays showed that myocardial plasma membrane Ca2+-ATPase (PMCA) expression was increased by 30% in CAMα1B-AR mice (N = 6, P < 0.05), although there was no change in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) expression. Moreover, total Ca2+-ATPase activity was not modified, but a significant increase in the activity of the thapsigargin-resistant (PMCA) to thapsigargin-sensitive (SERCA) ratio was detected. Neither Na+/K+-ATPase activity nor the expression of α1 and α2 subunit isoforms was changed in CAMα1B-AR mouse hearts. Moreover, immunoblot assays did not provide evidence for an enhanced activation of the three mitogen-activated protein kinases studied in this stage of hypertrophy. Therefore, these findings indicate that chronic cardiac α1B-AR activation in vivo led to mild hypertrophy devoid of significant signs of adaptive modifications concerning primary intracellular calcium control and growth-related proteins, suggesting a minor pathophysiological role of this adrenergic receptor in mouse heart at this stage of development.
Resumo:
The objective of this study was to use linear and non-linear methods to investigate cardiac autonomic modulation in healthy elderly men and women in response to a postural change from the supine to the standing position. Fourteen men (66.1 ± 3.5 years) and 10 women (65.3 ± 3.3 years) were evaluated. Beat-to-beat heart rate was recorded in the supine and standing positions. Heart rate variability was studied by spectral analysis, including both low (LFnu-cardiac sympathetic modulation (CSM) indicator) and high (HFnu-cardiac vagal modulation (CVM) indicator) frequencies in normalized units as well as the low frequency/high frequency (LF/HF) ratio. Symbolic analysis was performed using the following indexes: 0V% (CSM indicator), 1V% (CSM and CVM indicators), 2LV% (predominantly CVM indicator) and 2ULV% (CVM indicator). Shannon entropy was also calculated. Men presented higher LFnu and LF/HF ratio and lower HFnu and 1V% symbolic index (57.56, 4.14, 40.53, 45.96, respectively) than women (24.60, 0.45, 72.47, 52.69, respectively) in the supine position. Shannon entropy was higher among men (3.53) than among women (3.33) in the standing position, and also increased according to postural change in men (3.25; 3.53). During postural change, the LFnu (24.60; 49.85) and LF/HF ratio (0.45; 1.72) increased, with a concomitant decrease in HFnu (72.47; 47.56) and 2LV% (14.10; 6.95) in women. Women presented increased CSM in response to postural change and had higher CVM and lower CSM than men in the supine position. In conclusion, women in the age range studied presented a more appropriate response to a postural change than men, suggesting that cardiac autonomic modulation may be better preserved in women than in men.