70 resultados para second programming course
Resumo:
OBJECTIVE: To determine the influence of stress on teaching medical emergencies in an Advanced Cardiac Life Support (ACLS) course and to verify this influence on learning, and the efficiency of emergency care training. METHODS: Seventeen physicians signed up for an ACLS course. Their pulses were taken and blood pressure (BP) verified on the first day, before the beginning of the course, and on the second day, during the theoretical and practical test (TPT). Variations in pulse rates and BP were compared with students' test grades. Then, students answered a questionnaire of variables (QV) about the amount of sleep they had during the course, the quantity of study material and the time spent studying for the course, and a stress scale graphic. RESULTS: Seven students had a pulse variation less than 10% between the 2 periods and 10 had a 10% or more variation. Grades on TPT were, respectively, 91.4±2.4 and 87.3±5.2 (p<0.05). Six students had a BP variation less than 20 mmHg, and in 11 it varied more than 21 mmHg. Grades on the TPT were 92.3±3.3 and 86.2± 8.1, respectively (p<0.05). The QV dates did not significantly influence grades. CONCLUSION: Stress, as an isolated variable, had a negative influence on the learning process and on the efficiency of emergency training in this situation.
Resumo:
Background: Physiological reflexes modulated primarily by the vagus nerve allow the heart to decelerate and accelerate rapidly after a deep inspiration followed by rapid movement of the limbs. This is the physiological and pharmacologically validated basis for the 4-s exercise test (4sET) used to assess the vagal modulation of cardiac chronotropism. Objective: To present reference data for 4sET in healthy adults. Methods: After applying strict clinical inclusion/exclusion criteria, 1,605 healthy adults (61% men) aged between 18 and 81 years subjected to 4sET were evaluated between 1994 and 2014. Using 4sET, the cardiac vagal index (CVI) was obtained by calculating the ratio between the duration of two RR intervals in the electrocardiogram: 1) after a 4-s rapid and deep breath and immediately before pedaling and 2) at the end of a rapid and resistance-free 4-s pedaling exercise. Results: CVI varied inversely with age (r = -0.33, p < 0.01), and the intercepts and slopes of the linear regressions between CVI and age were similar for men and women (p > 0.05). Considering the heteroscedasticity and the asymmetry of the distribution of the CVI values according to age, we chose to express the reference values in percentiles for eight age groups (years): 18–30, 31–40, 41–45, 46–50, 51–55, 56–60, 61–65, and 66+, obtaining progressively lower median CVI values ranging from 1.63 to 1.24. Conclusion: The availability of CVI percentiles for different age groups should promote the clinical use of 4sET, which is a simple and safe procedure for the evaluation of vagal modulation of cardiac chronotropism.
Resumo:
Abstract Background: Acute coronary syndrome (ACS) is one of the main causes of morbidity and mortality in the modern world. A sedentary lifestyle, present in 85% of the Brazilian population, is considered a risk factor for the development of coronary artery disease. However, the correlation of a sedentary lifestyle with cardiovascular events (CVE) during hospitalization for ACS is not well established. Objective: To evaluate the association between physical activity level, assessed with the International Physical Activity Questionnaire (IPAQ), with in-hospital prognosis in patients with ACS. Methods: Observational, cross-sectional, and analytical study with 215 subjects with a diagnosis of ACS consecutively admitted to a referral hospital for cardiac patients between July 2009 and February 2011. All volunteers answered the short version of the IPAQ and were observed for the occurrence of CVE during hospitalization with a standardized assessment conducted by the researcher and corroborated by data from medical records. Results: The patients were admitted with diagnoses of unstable angina (34.4%), acute myocardial infarction (AMI) without ST elevation (41.4%), and AMI with ST elevation (24.2%). According to the level of physical activity, the patients were classified as non-active (56.3%) and active (43.7%). A CVE occurred in 35.3% of the cohort. The occurrence of in-hospital complications was associated with the length of hospital stay (odds ratio [OR] = 1.15) and physical inactivity (OR = 2.54), and was independent of age, systolic blood pressure, and prior congestive heart failure. Conclusion: A physically active lifestyle reduces the risk of CVE during hospitalization in patients with ACS.
When is the Best Time for the Second Antiplatelet Agent in Non-St Elevation Acute Coronary Syndrome?
Resumo:
Abstract Dual antiplatelet therapy is a well-established treatment in patients with non-ST elevation acute coronary syndrome (NSTE-ACS), with class I of recommendation (level of evidence A) in current national and international guidelines. Nonetheless, these guidelines are not precise or consensual regarding the best time to start the second antiplatelet agent. The evidences are conflicting, and after more than a decade using clopidogrel in this scenario, benefits from the routine pretreatment, i.e. without knowing the coronary anatomy, with dual antiplatelet therapy remain uncertain. The recommendation for the upfront treatment with clopidogrel in NSTE-ACS is based on the reduction of non-fatal events in studies that used the conservative strategy with eventual invasive stratification, after many days of the acute event. This approach is different from the current management of these patients, considering the established benefits from the early invasive strategy, especially in moderate to high-risk patients. The only randomized study to date that specifically tested the pretreatment in NSTE-ACS in the context of early invasive strategy, used prasugrel, and it did not show any benefit in reducing ischemic events with pretreatment. On the contrary, its administration increased the risk of bleeding events. This study has brought the pretreatment again into discussion, and led to changes in recent guidelines of the American and European cardiology societies. In this paper, the authors review the main evidence of the pretreatment with dual antiplatelet therapy in NSTE-ACS.
Resumo:
Abstract Background: There are sparse data on the performance of different types of drug-eluting stents (DES) in acute and real-life setting. Objective: The aim of the study was to compare the safety and efficacy of first- versus second-generation DES in patients with acute coronary syndromes (ACS). Methods: This all-comer registry enrolled consecutive patients diagnosed with ACS and treated with percutaneous coronary intervention with the implantation of first- or second-generation DES in one-year follow-up. The primary efficacy endpoint was defined as major adverse cardiac and cerebrovascular event (MACCE), a composite of all-cause death, nonfatal myocardial infarction, target-vessel revascularization and stroke. The primary safety outcome was definite stent thrombosis (ST) at one year. Results: From the total of 1916 patients enrolled into the registry, 1328 patients were diagnosed with ACS. Of them, 426 were treated with first- and 902 with second-generation DES. There was no significant difference in the incidence of MACCE between two types of DES at one year. The rate of acute and subacute ST was higher in first- vs. second-generation DES (1.6% vs. 0.1%, p < 0.001, and 1.2% vs. 0.2%, p = 0.025, respectively), but there was no difference regarding late ST (0.7% vs. 0.2%, respectively, p = 0.18) and gastrointestinal bleeding (2.1% vs. 1.1%, p = 0.21). In Cox regression, first-generation DES was an independent predictor for cumulative ST (HR 3.29 [1.30-8.31], p = 0.01). Conclusions: In an all-comer registry of ACS, the one-year rate of MACCE was comparable in groups treated with first- and second-generation DES. The use of first-generation DES was associated with higher rates of acute and subacute ST and was an independent predictor of cumulative ST.
Resumo:
In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.
Resumo:
The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.
Resumo:
The present paper colligates the notions acquired in previous investigations, already published, and new observations upon diseases of the psittacidae, liable to be confused with psittacosis of parrots. The author calls attention to the indifference with regard to this question shown by investigators, even by those who dealt with the study of this disease on the occasion of the latest outbreak of psittacosis, in flagrant contrast with the researches upon the alterations induced by pathogenic agents of other diseases transmissible to man, when these agents pass through animals or when the latter are depositaries of the virus. This remark considerably enhances the importance of the presence paper from a hygienic and epidemiologic point of view, representing moreover a contribution to general knowledge and to veterinary medicine. The researches carried out since the appearance of the latest outbreak of psittacosis,-which occurred simultaneously with an epizooty in parrots lodged in aviary of the park of Agua Branca (Directory of Animal Industry of the State São Paulo)-led to the verification of the frequent existence in these animals of various diseases liable to be confused with psittacosis. These diseases are due to two kinds of pathogenic agents: virus and bacteria. In the first group there are to be found the diseases occasioned by the virus of human psittacosis, discovered by Western, Bedson and Simpson, and the disease me with in parrots coming from traders in S. Paulo. The infections by bacteria of the genus Salmonella and by those of other genera belong to the second group. As differential characters of the two infections due to virus, delineated on the strength of notions drawn from a detailed experimental study and from the literature on this subject, the following are given: ¹ Samples of our virus were sent, for comparison, to various investigators of psittacosis. Amongst them, Prof. M. Rivers acceded to our request; he found its nature to be different from that of the virus of psittacosis studiedby him. We are very much obliged to him for the attention he paid to this verification. Virus of psittacosis - Infectiousness: man, monkey, rabbit, mouse, hen, canary. Neurotropic affinity. Inclusions: small, protoplasmic. Exsiccation: the virus has good power of preservation. Symptoms: inactivity, drowsiness, frequent diarrhoea, oculo-nasal discharge and cough, coma. Duration: 4 to 5 days. Bodily lesions: congestion of intestines, splenomegaly. Virus of S. Paulo - Infects only psittacidae, particularly those of the genus Amazona. No localization in the nervous system. Large, nuclear. Is rapidly destroyed. Inactivity, inappetency, adynamia (drooping of the wings, indifference, leaning its beak against the bars of the cage in order not to fall down); profuse diarrhoea, of whitish stools, at times enterorrhagia; prolonged coma. 2 to 8 days. Foci of yellowish necrosis in liver, spleen and lung. At times, congestion of intestines. Characteristic features common to the two viruses.-They act in great dilutions, filter through tight candles though being partly retained, are preserved under glycerine or Bedson's solution, are stable at 55°C. heat and are destroyed by physical and chemical agents. Both virus diseases are very seldom met with in psittacidae: only once, amongst numberless sick parrots, the author met with a disease of the virus differring from that of psittacosis. This disease, greatly transmissible to man, ought to be more frequent, if it were common in parrots. On the contrary, bacteria cause diseases in these animals with great frequency, presenting variable characters, from a severe epizootic form, rapidly mortal, to ambulatory or silent forms, for the most part developing towards a cure or assuming a chronic character. Amongst the bacteria which cause the infection of this group the salmonellae predominate and amongst them the bacterium discovered by Nocard, as well as a species which in the course of this study is characterized under the name of Salmonella nocardi. The author believes that in the epizooty from which Nocard isolated his bacterium there was association of the virus-disease inducing the epizooty of that epoch in Paris with the bacterial disease, as must have happened in Argentina, where the disease was transmitted to man, and Santillan, according to Barros, isolated from the sick parrots bacteria of the genus Salmonella. The diseases of the two groups, that due to virus and that due to bacteria, are differentiated: Virus-diseases - Evolution: rapid, nearly always followed by death. Symptoms: sadness, profuse diarrhoea, of whitish stools, at times enterorrhagia, complete inappetency, adynamia, indifference, prolonged coma. Clinical forms: acute and subacute. Lesions: Foci of necrosis in liver and spleen without cellular reaction around the focus, yellow liver, multiple serositis. Presence of protoplasmic or nuclear granulations. Bacteriology: Complete lack or inconstant presence of bacteria in the organs and blood. Infectiousness of the organs and blood after filtration: positive. Bacterial diseases - Varies from one week to a month or more, not always fatal. Sadness, partial inappetency, tremblings, intensive thirst, mucous or mucosanguineous diarrhoea, lack of adynamia (reacts to stimulations and moves well at any time of the disease, though showing little disposition to locomotion), soiling of feathers. Frustrate, acute, subacute and chronic. Hepatic and intestinal cogestion, foci of necrosis in liver, spleen and lung with cellular reaction around the focus. Lack of granulations. Constant presence of bacteria in the organs and blood. Negative. The analysis of the litterature shows that the characteristic features of the diseases in parrots referred to parrot psittacosis, more frequently approach the bacterial diseases here described of these animals, a hypothesis which is reinforced by the observation of the greater frequency of infections...
Resumo:
Frequent individual observations od different stages of Rhodnius prolixus exposed to Trypanosoma rangeli, revealed a higher susceptibility to infection in the bugs exposed during the two first instars. The mortality rate in infected bugs was significantly higher than in controls, indicating that the parasite was responsible for the majority of deaths. An analysis of the mortality distribution, per instar, is presented. Statistical analysis of deaths among the different infected instars, showed that T. rangeli produces its pathological effect in any stage of R. prolixus independently of its susceptibility to the parasite. The survival to adult decreased in all the infected instar bugs. A significant longer time to reach the adult stage was observed in the infected bugs when compared with controls, excepting for specimens exposed in the third instar. The epidemiological significance of the present results is discussed.
Resumo:
First and second instar larvae of some Sarcophagidae (Diptera) of the tribe Raviniini are described on observations with a scanning electron microscope.
Resumo:
Schistosoma mansoni infected hosts produce an IgG that mediates the complement-dependent killing of schistosomula in vitro. In this study, we followed the levels of serum lethal antibody during infection of rats and mice. Rats presented detectable lethal activity early in the course of infection with a peak in the 6-8th week of infection. This activity declined to non-detectable levels within 2 weeks, remaining low up to the 20-26th week. In mice, lethal antibody was not detected before 7-12 weeks of infection, but raised to higher levels, as compared to non-infected animals, up to 20-24 weeks after infection. We correlate lethal antibody and protective immunity suggesting that the antibody-mediated complement-dependent cytotoxicity to schistosomula play a role in the immunity to reinfection.
Resumo:
The acute toxemic form of schistosomiasis mansoni is studied under anatomic and clinical point of view, according to classification made by Neves, Raso and Bagliolo in 1975. The first phase is characterized by the following facts: cutaneous (immediate and late) manifestations; high fever or in progressive elevation; intense diaphoresis abdominal disconfort; intense acquous diarrhea; dehidratation; loss of weight, dry cough; painful hepatosplenomegaly; discreet lymphademegaly, progressive increase of blood leucocytes and eosinophisles; radiological pulmonary alterations; absence of alterations in serum protein and hepatic functional tests; the hepatic function byopsy shows focus of acute hepatitis. The second stage or properly named toxemic period was clinically characterized by the neat aggravation of the previously observed phenomena. At last, the evolutive course of the disease has implication derived not only of the worm's presence, but from the intense dissemination of eggs in the tissue. In the pre-laying phase one studied the forms of cercarian dermatitis, prodromic and innapparent. In the post laying phase, the properly named acute toxemic form, with its types: pseudocholeraic, pseudotyphous, pseudodysenteric-bacillary, pseudonophritic, pseudoenterovirotic, the reactivated, the ischemic enterocolitis and others; whenever possible clinical and anatomic correlation will be made.