35 resultados para saline gradient -
Resumo:
Inhalation of hypertonic saline (HS) causes bronchoconstriction in asthmatic subjects. Repeated inhalation of HS leads to substantially reduced bronchoconstriction, known as the refractory period. Refractoriness due to different stimuli has also been described (cross-refractoriness). Nocturnal asthma is defined as an increase in symptoms, need for medication, airway responsiveness, and/or worsening of lung function that usually occurs from 4 to 6 am. Our objective was to determine the effect of refractoriness on nocturnal asthma. The challenge test consisted of inhalations of 4.5% saline with increasing durations until a reduction of 20% in forced expiratory volume in 1 s (FEV1) (PD20HS) or total time of 15.5 min. Twelve subjects with nocturnal asthma were challenged with HS at 16:00 and 18:00 h and FEV1 was measured at 4:00 h. One to 2 weeks later, FEV1 was determined at 16:00 and 4:00 h. LogPD20HS at 18:00 h was significantly greater than logPD20HS at 16:00 h, 0.51 ± 0.50 and 0.69 ± 0.60 mg, respectively (P = 0.0033). When subjects underwent two HS challenges in the afternoon, mean (± SD) FEV1 reduction was 206 ± 414 mL or 9.81 ± 17.42%. On the control day (without challenge in the afternoon) FEV1 reduction was 523 ± 308 mL or 22.75 ± 15.40% (P = 0.021). Baseline FEV1 values did not differ significantly between the control and study days, 2.48 ± 0.62 and 2.36 ± 0.46 L, respectively. The refractory period following HS challenges reduces the nocturnal worsening of asthma. This new concept may provide beneficial applications to asthmatic patients.
Resumo:
Shock and resuscitation render patients more susceptible to acute lung injury due to an exacerbated immune response to subsequent inflammatory stimuli. To study the role of innate immunity in this situation, we investigated acute lung injury in an experimental model of ischemia-reperfusion (I-R) followed by an early challenge with live bacteria. Conscious rats (N = 8 in each group) were submitted to controlled hemorrhage and resuscitated with isotonic saline (SS, 0.9% NaCl) or hypertonic saline (HS, 7.5% NaCl) solution, followed by intratracheal or intraperitoneal inoculation of Escherichia coli. After infection, toll-like receptor (TLR) 2 and 4 mRNA expression was monitored by RT-PCR in infected tissues. Plasma levels of tumor necrosis factor α and interleukins 6 and 10 were determined by ELISA. All animals showed similar hemodynamic variables, with mean arterial pressure decreasing to nearly 40 mmHg after bleeding. HS or SS used as resuscitation fluid yielded equal hemodynamic results. Intratracheal E. coli inoculation per se induced a marked neutrophil infiltration in septa and inside the alveoli, while intraperitoneal inoculation-associated neutrophils and edema were restricted to the interseptal space. Previous I-R enhanced lung neutrophil infiltration upon bacterial challenge when SS was used as reperfusion fluid, whereas neutrophil influx was unchanged in HS-treated animals. No difference in TLR expression or cytokine secretion was detected between groups receiving HS or SS. We conclude that HS is effective in reducing the early inflammatory response to infection after I-R, and that this phenomenon is achieved by modulation of factors other than expression of innate immunity components.
Resumo:
The relationship of NaCl with problems of arterial hypertension has led to a reduction in the levels of this salt in food production. KCl has been used as a partial substitute for NaCl since it cannot be completely substituted without affecting the acceptability of the end product. In this study, the diffusion that occurs during quail egg salting in static and stirred brine was simulated. The mathematical model used was based on a generalization of the Fick's 2nd law, and the COMSOL Multiphysics software was used to simulate the diffusion in the NaCl-KCl-water system. The deviations in the simulated data and experimental data were 2.50% for NaCl and 6.98% for KCl in static brine, while in the stirred brine they were 3.48% for NaCl and 4.72% for KCl. The simulation results presented good agreement with the experimental values and validated the predictive capacity of the model.
Resumo:
The objective of this experiment was to determine the influence of different salt levels (zero, 15, 30, 45 and 60mM NaCl) on seed physiological quality of two wheat cultivars (BRS 177 and BRS 179). SUMMARIZE METHODOLOGY. The results allow the following conclusions: the physiological quality (germination and vigor) of wheat seeds, cultivars BRS 179 and BRS 177, decrease with the increase of the salinity. The wheat seeds cv. BRS 179 performs better than BRS 177, mainly in higher salt concentrations (³ 45mM of NaCl). The electric conductivity of wheat seeds increases in function of the increment of the saline concentrations.
Resumo:
The objective of the experiments was to determine the influence of the effects of different salt levels (zero, 15, 30, 45 and 60mM NaCl) on the physiological quality of seeds of two barley cultivars (BRS 195 and AF 98067). Assays were conducted to evaluate salt stress on germination and vigor. The germination and germination rate of the barley seeds decreased as salt levels increased, reducing the seed viability and vigor. The salinity affected the membrane integrity, mainly in AF 98067 that showed more sensitivity to salt stress.