86 resultados para respiration mitochondriale
Resumo:
Araucaria angustifolia (Bert.) O. Kuntze is the main component of the Mixed Ombrophilous forest and, in the State of São Paulo, it is associated with a high diversity of soil organisms, essential for the maintenance of soil quality, making the conservation of this ecosystem a major and pressing challenge. The objective of this study was to identify the physical and chemical properties that are most closely correlated with dehydrogenase enzyme activity, basal respiration and microbial biomass under native (NF) and replanted (RF) Araucaria angustifolia forests in three regions of the state of São Paulo, in winter and summer. The main differentiating factors between the areas were also determined. Each forest was represented by three true replications; at each site, from around the araucaria trees, 15 soil samples (0-20 cm) were collected to evaluate the soil physical, chemical and microbiological properties. At the same points, forest litter was sampled to assess mass and chemical properties. The following microbiological properties were evaluated: microbial biomass carbon (MBC), basal respiration (CO2-C), metabolic quotient (Q: CO2), dehydrogenase enzyme activity (DHA) as well as the physical properties (moisture, bulk density, macroporosity and total porosity), soil chemical properties [pH, organic carbon (org-C), P, Ca, K, Mg, Al, H+Al], litter dry mass, and C, N and S contents. The data were subjected to analysis of variance (TWO-WAY: ANOVA). A Canonical Discriminant Analysis (CDA) and a Canonical Correlation Analysis (CCA) were also performed. In the soil under NF, the values of K, P, soil macroporosity, and litter dry mass were higher and Q: CO2 and DHA lower, regardless of the sampling period, and DHA was lower in winter. In the RF areas, the levels of moisture, porosity and Q: CO2 were higher in both sampling periods, and DHA was higher in winter. The MBC was only higher under NF in the summer, while the litter contents of C, N and S were greater in winter. In winter, CCA showed a high correlation of DHA with CO2-C, pH and H+Al, while in the summer org-C, moisture, Mg, pH and litter C were more associated with DHA and CO2-C. The CDA indicated H+Al, available P, total porosity, litter S content, and soil moisture as the most discriminating variables between NF and RF, but moisture was the most relevant, in both seasons and CO2-C only in winter. The combined analysis of CCA and CDA showed that the contribution of the microbiological variables to a differentiation of the areas was small at both samplings, which may indicate that the period after reforestation was long enough to allow an almost complete recovery of the microbial activity.
Resumo:
The Garanhuns Plateau in the Agreste region of the State of Pernambuco, Brazil is characterized by humid climatic conditions due to orographic rains, unlike the surrounding semiarid region. These soils are subjected to intense agricultural use and are extremely important for the regional economy. This study was carried out in the municipality of Brejão in the Agreste region with the aim of assessing changes in humic Haplustox soils subjected to different land uses. Four plots with different vegetation covers (native forest, secondary shrubby vegetation (capoeira), traditional cropping system, and planted pasture) were selected, and samples were taken from a soil profile and four small pits surrounding it at each site. Physical and chemical properties were assessed, including aggregate stability, humic organic fractions, and a microbiological evaluation through determination of basal respiration, microbial biomass carbon, and metabolic quotient. The soils under study showed physical and chemical properties typical of a Haplustox, such as low nutrient content, low cation exchange capacity, and high levels of acidity and Al saturation. The total organic carbon (TOC) contents were high regardless of the type of land use. Aggregates < 2 mm were dominant in all the conditions under study. The TOC content was higher in the soil under capoeira, 43.91 g kg-1 on the surface, while 34.36 and 33.43 g kg-1 of TOC were observed in the first layer of forest and pasture soils, respectively. While the microbial biomass C (MBC) was greater than 700 mg kg-1 in the forest and pasture areas (in the 0-5 cm layer), and 588 mg kg-1 in the soil under capoeira, these numbers were not statistically different. In the cultivated soil area, there was a reduction of around 28 % in TOC and MBC contents. Agricultural activity contributed to degradation of the humic horizon, as can be seen from a significant decrease in the TOC and changes in the relative distribution of the humic fractions. In contrast, aggregate stability was not altered as a function of the different land uses; the soil under planted pasture and capoeira were similar to the soil under native forest. Humin was the most important humified fraction for C reserves, contributing over 40 % of the TOC in these soils.
Resumo:
Integrated crop-livestock systems (ICLs) are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR), Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC) and soil enzymatic activity in an ICL of soybean (summer) and Brachiaria ruziziensis (winter), with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI): 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively) and a no grazing (NG) control. The microbial characteristics analysed were MBC, microbial respiration (MR), metabolic quotient (qCO2), the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA) hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate) grazing intensity) contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10) contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height) during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20) and no grazing (NG) treatments.
Resumo:
Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.
Resumo:
ABSTRACT The large production of sewage sludge (SS), especially in large urban centers, has led to the suggestion of using this waste as fertilizer in agriculture. The economic viability of this action is great and contributes to improve the environment by cycling the nutrients present in this waste, including high contents of organic matter and plant nutrients. This study evaluated the chemical and biochemical properties of Dystrophic and EutroferricLatossolos Vermelhos (Oxisols) under corn and after SS application at different rates for 16 years. The field experiment was carried out in Jaboticabal, São Paulo State, Brazil, using a randomized block design with four treatments and five replications. Treatments consisted of control - T1 (mineral fertilization, without SS application), 5 Mg ha-1 SS - T2, 10 Mg ha-1 SS - T3, and 20 Mg ha-1 SS - T4 (dry weight base). The data were submitted to variance analysis and means were compared by the Duncan test at 5 %. Sewage sludge increased P extracted by resin in both theLatossolos Vermelhos, Dystrophic and Eutroferric, and the organic matter content in the Dystrophic Latossolo Vermelho. The waste at the rate 20 Mg ha-1 on a dry weight basis promoted increases in acid phosphatase activity in Eutroferric Latossolo Vermelho, basal respiration and metabolic quotient in DystrophicLatossolo Vermelho. The rate 20 Mg ha-1 sewage sludge on a dry weight basis did not alter the soil microbial biomass in both the Latossolos Vermelhos; in addition, it improved corn yields without inducing any symptoms of phytotoxicity or nutrient deficiency in the plants.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
The objective of this work was to determine the early physiological changes throughout shelf life of fresh broccoli (Brassica oleracea L. var. italica) cv. Piracicaba Precoce at 25ºC and relative humidity of 96% in the dark until complete senescence. Head inflorescences showed lack of turgidity and commercial value when weight loss reached up to 5%, coinciding with 48 hour after harvest. Chlorophyll content was stable until 24 hours after harvesting; afterwards, an intense degradation phase took place. At 72 hours, total head yellowing was observed when chlorophyll content dropped to 30% of its initial content. Peroxidase activity increased by 1.4 fold during the first six hours, dropping to its lowest level approximately 24 hours after harvesting. However, from this time on, an increment of activity was observed until 72 hours. At 24 hours after harvesting, respiration was reduced by 50%. At later stages of senescence, respiration of florets was stable, but in a lower level than that determined at harvest. Sharp reduction of starch and reducing sugars was observed within 24 hours after harvesting, followed by continuous period of decline in starch and non-reducing sugars.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
The inhibition of ethylene action by 1-methylcyclopropene (1-MCP) extends shelf and storage life of many climacteric fruits. However, 1-MCP appears to have limited effects on stone fruit depending on specie and cultivar. The effects of 1-MCP on ripening and quality of 'Laetitia' plums were determined during ripening at 23ºC following harvest and cold storage. Japanese plums (Prunus salicina, cv. Laetitia) were harvested at mature pre-climacteric stage, cooled to 2ºC within 36 hours of harvest and then treated with 0, 0.05, 0.10, 0.50 or 1.00 muL L-1 of 1-MCP at 1°C for 24 hours. Following treatment, fruits were either held at 23ºC for 16 days or stored at 1ºC for 50 days. Fruits were removed from cold storage at 10-day intervals and allowed to ripe at 23°C for five days. A delay of climacteric respiration and ethylene production by 1-MCP treatment during ripening following harvest and cold storage was associated to a slow rate of fruit softening. 1-MCP treatment also delayed the loss of titratable acidity and changes of flesh and skin color, whereas it had little or no effect on soluble solids content. 1-MCP effects were concentration- and storage duration-dependent and, generally, a saturation fruit response to 1-MCP occurred between 0.5 and 1.0 muL L-1. During ripening, 1-MCP treated fruits attained quality similar to that of controls. Results indicated that 1-MCP treatment may extend shelf life (23ºC) and storage life (1ºC) of 'Laetitia' plums by approximately six and 20 days, respectively.
Resumo:
The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate.
Resumo:
The objective of this work was to assess the effect of different coffee organic cultivation systems on chemical and biological soil characteristics, in different seasons of the year. The following systems were evaluated: coffee intercropped with one (CJ1), two (CJ2) or three (CJ3) pigeon pea (Cajanus cajan) alleys; coffee planted under full sun (CS); area planted with sweet pepper and snap bean in a conventional tillage system (AC); and secondary forest area (FFR). Row spacing in CJ1, CJ2, CJ3 and CS was 2.0x1.0, 2.8x1.0, 3.6x1.0, and 2.8x1.0 m, respectively. Soil samples were collected at 10-cm depth, during the four seasons of the year. The results were subjected to analysis of variance, principal component analysis, and redundancy analysis. There was an increase in edaphic macrofauna, soil basal respiration, and microbial quotient in the summer. Total macrofauna density was greater in CJ2 followed by CJ3, CS, CJ1, AC and FFR; Coleoptera, Formicidae, and Isoptera were the most abundant groups. There are no significant differences among the areas for soil basal respiration, and the metabolic quotient is higher in CJ1, CJ3, and FFR. Microbial biomass carbon and the contents of K, pH, Ca+Mg, and P show greater values in AC.
Resumo:
The objective of this work was to evaluate the effect of the pasture (Urochloa brizantha) component age on soil biological properties, in a crop-livestock integrated system. The experiment was carried out in a Brazilian savannah (Cerrado) area with 92 ha, divided into six pens of approximately 15 ha. Each pen represented a different stage of the pasture component: formation, P0; one year, P1; two years, P2; three years, P3; and final with 3.5 years, Pf. Samples were taken in the 0-10 cm soil depth. The soil biological parameters - microbial biomass carbon (MBC), microbial biomass respiration (C-CO2), metabolic quotient (qCO2), microbial quotient (q mic), and total organic carbon (TOC) - were evaluated and compared among different stages of the pasture, and between an adjacent area under native Cerrado and another area under degraded pasture (PCD). The MBC, q mic and TOC increased and qCO2 reduced under the different pasture stages. Compared to PCD, the pasture stages had higher MBC, q mic and TOC, and lower qCO2. The crop-livestock integrated system improved soil microbiological parameters and immobilized carbon in the soil in comparison to the degraded pasture.
Resumo:
The objective of this work was to evaluate the microbiological and chemical attributes of a soil with a seven‑year history of urea and swine manure application. In the period from October 2008 to October 2009, soil samples were collected in the 0-10 cm layer and were subjected to the treatments: control, without application of urea or manure; and with the application of urea, pig slurry, and deep pig litter in two doses, in order to supply one or two times the recommended N doses for the maize (Zea mays)/black oat (Avena strigosa) crop succession. The carbon of the microbial biomass (MB‑C) and the basal respiration (C‑CO2) were analyzed, and the metabolic (qCO2) and microbial quotient (qmic) were calculated with the obtained data. Organic matter, pH in water, available P and K, and exchangeable Ca and Mg were also determined. The application of twice the dose of deep pig litter increases the MB‑C and C‑CO2 values. The qmic and qCO2 are little affected by the application of swine manure. The application of twice the dose of deep pig litter increases the values of pH in water and the contents of available P and of exchangeable Ca and Mg in the soil.
Resumo:
The objective of this work was to evaluate the effect of growth regulators on gas diffusion and on metabolism of 'Brookfield' apple, and to determine their correlation with quality characteristics of fruit stored in controlled atmosphere. A completely randomized design was used with four replicates. After eight months of storage, the effects of water (control), aminoethoxyvinylglycine (AVG), AVG + ethephon, AVG + naphthaleneacetic acid (NAA), ethephon + NAA, sole NAA, 1-MCP, ethylene absorption by potassium permanganate (ABS), AVG + ABS, and of AVG + 1-MCP - applied at different rates and periods - were evaluated on: gas diffusion rate, ethylene production, respiratory rate, internal ethylene concentration, internal CO2 content, mealiness, and intercellular space. Fruit from the control and sole NAA treatments had the highest mealiness occurrence. Growth regulators significantly changed the gaseous diffusion through the pulp of 'Brookfield' apple, mainly in the treatment AVG + ABS, which kept the highest gas diffusion rate. NAA spraying in the field, with or without another growth regulator, increased ripening metabolism by rising ethylene production and respiration rate, and reduced gas diffusion during shelf life. AVG spraying cannot avoid the ethephon effect during the ripening process, and reduces both the internal space and mealiness incidence, but it is not able to induce ethylene production or to increase respiration rates.
Resumo:
O objetivo deste trabalho foi avaliar o efeito de diferentes níveis de processamento e temperaturas de armazenamento na atividade respiratória e na produção de etileno de laranja 'Pêra' minimamente processada. O experimento foi realizado em duas etapas. Na primeira, as laranjas lavadas, sanificadas e resfriadas foram submetidas aos processamentos: a) segmentos; b) inteiras sem albedo; c) inteiras com albedo; d) intactas (controle). As laranjas minimamente processadas foram armazenadas a 6ºC. Na segunda etapa, as laranjas sem albedo foram armazenadas a 1; 11; 21 e 31ºC. A atividade respiratória e a produção de etileno eram determinadas imediatamente após o processamento; a cada hora, durante 10 horas, e a cada 24 horas, durante sete dias. O delineamento utilizado foi o inteiramente casualizado, com seis repetições por tratamento. O processamento interferiu na atividade respiratória, que foi maior imediatamente após o descascamento e a separação dos segmentos. O processamento das laranjas na forma inteira, com ou sem albedo, afetou a atividade respiratória das mesmas somente nas primeiras horas após o processamento. Durante todo período de armazenamento, a atividade respiratória das laranjas a 1º e 11ºC não diferiu entre si, sendo inferior à das laranjas a 21º e 31ºC. O etileno foi detectado apenas nos frutos mantidos a 21º e 31ºC. Os quocientes de temperatura, após a estabilização, eram 1,73 para 1-11ºC, 2,11 para 11-21ºC, e 1,54 para 21-31ºC. A atividade respiratória das laranjas foi influenciada pelos níveis de processamento e pela temperatura de armazenamento.