112 resultados para relativistic heavy ions reactions
Resumo:
The monitoring of heavy metal concentrations in areas under intensive agriculture is essential for the agricultural sustainability and food safety. This paper evaluates the total contents of heavy metals in soils and mango trees in orchards of different ages (6, 7, 8, 9, 10, 11, 14, 16, 17, 19, and 26 years) in Petrolina, Pernambuco, Brazil. Soil samples were taken from the layers 0-20 cm and 20-40 cm, and mango leaves were collected in the growth stage. Areas of native vegetation (Caatinga) adjacent to the cultivated areas were used for comparison. The total concentrations of heavy metals (Cu, Cr, Fe, Zn, Mn, Ni, and Pb) were determined in soils and leaves. In general, mango cultivation led to Cu and Zn accumulation in the soil surface and to a reduction in the contents of Ni, Pb, Mn, and Fe in surface and subsurface. Since contamination by Cu, Zn, and Cr was detected, these areas must be monitored to prevent negative environmental impacts. For instance, the presence of Cr in mango tree leaves indicates the need to investigate the source of the element in these orchards. The management strategies of the different companies led to deficiency or excess of some metals in the evaluated areas. However, the Fe and Mn levels were adequate for the mineral nutrition of mango in all areas.
Resumo:
The lack of a standard method to regulate heavy metal determination in Brazilian fertilizers and the subsequent use of several digestion methods have produced variations in the results, hampering interpretation. Thus, the aim of this study was to compare the effectiveness of three digestion methods for determination of metals such as Cd, Ni, Pb, and Cr in fertilizers. Samples of 45 fertilizers marketed in northeastern Brazil were used. A fertilizer sample with heavy metal contents certified by the US National Institute of Standards and Technology (NIST) was used as control. The following fertilizers were tested: rock phosphate; organo-mineral fertilizer with rock phosphate; single superphosphate; triple superphosphate; mixed N-P-K fertilizer; and fertilizer with micronutrients. The substances were digested according to the method recommended by the Ministry for Agriculture, Livestock and Supply of Brazil (MAPA) and by the two methods 3051A and 3052 of the United States Environmental Protection Agency (USEPA). By the USEPA method 3052, higher portions of the less soluble metals such as Ni and Pb were recovered, indicating that the conventional digestion methods for fertilizers underestimate the total amount of these elements. The results of the USEPA method 3051A were very similar to those of the method currently used in Brazil (Brasil, 2006). The latter is preferable, in view of the lower cost requirement for acids, a shorter digestion period and greater reproducibility.
Resumo:
Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.
Resumo:
ABSTRACT Heavy metals contained in electronic waste, if discarded improperly, can become bioavailable after vermicomposting, posing a risk to the environment. Small-scale vermicomposting experiments were carried out with printed circuit boards (PCBs) to investigate the migration of heavy metals (Cu, Pb, Zn, Ni, and Sn) to the final compost, as well as the mobility and bioavailability of these metals. High total levels of Pb, Sn and Cu in samples of manure with electronic waste (MEW) and vegetables with electronic waste (VEW) were detected. Based on the initial metal levels in the PCBs and their concentration in the resulting compost, the order of migration of these metals to the MEW and VEW samples was Sn (23.1 %)>Pb (18.4 %)>Ni (4.63 %)>Zn (0.46 %)>Cu (0.14 %) and Sn (24.3 %)>Pb (23.6 %)>Ni (11.33 %)>Zn (1.76 %)>Cu (0.60 %), respectively. Mobility and bioavailability of these metals in the compost were evaluated by three-stage sequential extraction, where F1 was the exchangeable fraction, F2 the organic fraction and F3 the residual fraction. The bioavailability factor (BF) was calculated by the ratio of the sum of fractions F1 and F2 divided by the total sum of the fractions (F1 + F2 + F3). The highest bioavailability factor (BF = 0.92) was found for Pb, the heavy metal considered the greatest environmental concern in this study, indicating the high mobility and the possibility of becoming bioavailable of this metal.
Resumo:
The effect of soil contamination by polycyclic aromatic hydrocarbons (PAH) and heavy metals on earthworms and enchytraeids was studied in urban parks, in Brno, Czech Republic. In spring and autumn 2007, annelids were collected and soil samples taken in lawns along transects, at three different distances (1, 5 and 30 m) from streets with heavy traffic. In both seasons, two parks with two transects each were sampled. Earthworms were collected using the electrical octet method. Enchytraeids were extracted by the wet funnel method from soil cores. All collected annelids were counted and identified. Basic chemical parameters and concentrations of 16 PAH, Cd, Cu, Pb, and Zn were analysed from soil from each sampling point. PAH concentrations were rather low, decreasing with the distance from the street in spring but not in autumn. Heavy metal concentrations did not decrease significantly with increasing distance. Annelid densities did not significantly differ between distances, although there was a trend of increase in the number of earthworms with increasing distance. There were no significant correlations between soil content of PAH or heavy metals and earthworm or enchytraeid densities. Earthworm density and biomass were negatively correlated with soil pH; and enchytraeid density was positively correlated with soil phosphorus.
Resumo:
The aim of this work is to study the electrochromism and the reaction kinetics of lithium electrointercalation in anodic niobium oxide films. The oxide grown in an acid environment by application of an alternating potential shows interference colour (iridescence) and when reduced in lithium perclorate/PC solution, the intercalation of Li+ ions and electrons causes a reversible colour change (electrochromism), characterized here by electrochemical and optical measurements. A model where the reaction kinetics is dominated by diffusion of ionic pairs (Li+, e-) in the oxide film permitted the reproduction of current and absorbance temporal dependence, confirming the relationship between the electrochromic and electrochemical reactions. From the results obtained, a relation was established where the colour change is associated to the reduction of Nb+5 to Nb+4 ions with simultaneous cations injection.
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
The strong reducing action of L-ascorbic acid (Vitamin C) are of fundamental interest in biochemical and related process. The oxidation of ascorbic acid by molecular oxygen and others oxidants are of fundamental importance, involving the intervention of transition metal ions as catalysts and the formation transition metal complexes of ascorbic acid as intermediates. The present article is intended to cover some aspects of the reactions of ascorbic acid and related compounds involving some transition metal ions.
Resumo:
The oxidation process of sulfur (IV) species (SO2, HSO3- e SO32-) by oxygen, catalysed by trace metal ion and complexes, can play an important role in atmospheric, analytical and bioinorganic chemistry. An overview of the most important reactions in these fields is presented. A fascinating redox cycling of the metal ions and complexes during such autoxidation process was revealed by the combination of kinetics and coordination chemistry studies.
Resumo:
In environmental studies it is necessary to know the adsorption behavior of metals by soils, since the unfavorable effects of heavy metals and even the micronutrients at high concentrations in the environment are related to these adsorbents' ability to immobilize them. A sample of a humic yellow red oxisol from Araponga region in the State of Minas Gerais, Brazil, was used to verify the adsorption behavior of Cu2+ ions in this substrate. The mathematical model described by Langmuir's adsorption equation in its linearized form was applied and the values of the maximum capacity b and those of the constant related to the bonding energy a were obtained. Aliquots of copper nitrate solutions containing several concentrations of this metal were added to soil samples, the pH being predetermined for developing the adsorption experiments. The chemical and physical characterization of soil sample were performed by determining the organic carbon, nitrogen and phosphorus concentrations, cation exchange capacity (CEC), pH, concentration of metals (Al, Fe, K, Mg, Ca, Zn, Cu, Ni, Cr, Co, Pb, and Cd), granulometric analysis and X-ray diffraction. Langmuir isotherms presented two distinct adsorption regions at both pH 4 and pH 5, showing that the adsorptive phenomenon occurs in two distinct stages. The adsorption sites for the lower part presented greater bonding energy and low adsorption capacity compared with the adsorption sites of the part of the curve corresponding to higher Cu concentrations in the equilibrating solution.
Resumo:
Electrochemical methods applied to organic species transformation has been used as excellent synthesis tools. C-C bonds can be established, making possible polymer synthesis by both anodic and cathodic reactions of suitable monomer species at the working electrode surface. In this study, anodic procedure was used to electropolymerization of 2-mercaptobenzimidazole at reticulated glassy carbon (RGC) surface. 2-mercaptobenzimidazole presents ligand sites towards Hg2+, Ag+ and Cu2+ ions. The obtained material has been able to adsorb the above mentioned ions in aqueous solution.
Resumo:
Carbonium ions are carbocations with a pentacoordinated carbon atom, where the electronic octet is maintained. They possess a three center two electron bond in order to keep the tetravalence of the carbon atom. This paper reviews the concept of carbonium ions, their formation, stability and reactions.
Resumo:
Four commonplace concerted reactions are examined using (i) correlation diagrams, (ii) frontier molecular orbital analyses for transition states, (iii) Zimmerman-Dewar analyses for transition states and (iv) modified Zimmerman-Dewar analyses for transition states. Only the latter approach is consistently satisfactory.
Resumo:
In this work the CCl4 degradation in aqueous solution by sonication with 40 kHz commercial ultrasonic bath was investigated. Sonochemical degradation of CCl4 occur by the cleavage of C-Cl bond into the cavitation bubbles. Oxidation reactions and the pH decreasing in the bulk solution during sonication were attributed to chlorine radicals produced by CCl4 sonolysis, leading to increase the chloride concentration. The formation of oxidizing agents was evaluated employing I- and Fe2+ ion solutions, converted to I2 and HIO, and Fe3+, respectively. The amount of chloride and hydronium ions produced after 3 min of irradiation was 11.52 and 12.19 mmol, respectively, suggesting that the same reaction was involved to produce these ions. Fe2+ oxidation and the pH variation were monitored to estimate chlorine radical formation rate in the presence (0.107 mumol s-1) and absence (0.092 mumol s-1) of metallic ion during the first minute of sonication.
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.