34 resultados para pyrazole lactam 1,3-dipolar cycloaddition medicinal chemistry
Resumo:
The alkene 2,4-dimethyl-8-oxabicyclo[3.2.1]-oct-6-en-3-one (3) was converted to 1,3,10-trimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione (7) and 1,3-dimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione (8) with a 55% overall yield in both cases. Lactones (7) and (8) were converted in two steps to 1,3,4-trimethyl-13-methylene-6-oxatricyclo[8.3.0.0(3,7)]-trideca-2,5,12-trione (12) (63%) and 1,3-dimethyl-13-methylene-6-oxatricycle[8.3.0.0(3,7)]-trideca-2,5,12-trione (13) (45% from 8). The effect of lactones (7), (8), (12), (13) and the intermediates (5) and (6), at the concentration of 250 mug mL-1, on the growth of Cucumis sativus L. and Sorghum bicolor L. was evaluated. The best results were observed for lactone (13) that caused 100% inhibition on the root growth of C. sativus and lactone (12) that inhibited 90% of the root growth for S. bicolor.
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
Schizophrenia is a devastating psychiatric illness that affects 1-2% of the world population and continues as a challenge to neuroscience. In this work, we describe an account about the historical evolution of the dopaminergic hypothesis of schizophrenia discussing, from the medicinal chemistry point of view all different classes of antipsychotic drugs, emphasizing the rational design, structure activity relationships (SAR) and physico-chemical properties related with its molecular mechanism of action.
Resumo:
Cytochrome P450 (CYP) 2A enzymes are involved in the metabolism of numerous drugs and hormones and activate different carcinogens. Human CYP2A6, mouse CYP2A5 and rat CYP2A3 are orthologous enzymes that present high similarity in their amino acid sequence and share substrate specificities. However, different from the human and mouse enzyme, CYP2A3 is not expressed in the rat liver. There are limited data about expression of CYP2A3 in extrahepatic tissues and its regulation by typical CYP inducers. Therefore, the objective of the present study was to analyze CYP2A3 mRNA expression in different rat tissues by RT-PCR, and to study the influence of 3-methylcholanthrene, pyrazole and ß-ionone treatment on its expression. Male Wistar rats were divided into four groups of 5 rats each, and were treated ip for 4 days with 3-methylcholanthrene (25 mg/kg body weight), pyrazole (150 mg/kg body weight), ß-ionone (1 g/kg body weight), or vehicle. Total RNA was extracted from tissues and CYP2A3 mRNA levels were analyzed by semiquantitative RT-PCR. CYP2A3 mRNA was constitutively expressed in the esophagus, lung and nasal epithelium, but not along the intestine, liver, or kidney. CYP2A3 mRNA levels were increased in the esophagus by treatment with 3-methylcholanthrene and pyrazole (17- and 7-fold, respectively), in lung by pyrazole and ß-ionone (3- and 4-fold, respectively, although not statistically significant), in the distal part of the intestine and kidney by 3-methylcholanthrene and pyrazole, and in the proximal part of the intestine by pyrazole. CYP2A3 mRNA was not induced in nasal epithelium, liver or in the middle part of the intestine. These data show that, in the rat, CYP2A3 is constitutively expressed in several extrahepatic tissues and its regulation occurs through a complex mechanism that is essentially tissue specific.