35 resultados para prodrug pharmacokinetics
Resumo:
FTY720 is a new and effective immunosuppressive agent, which produces peripheral blood lymphopenia through a lymphocyte homing effect. We investigated the relationship between the dose of FTY720 or blood concentration (pharmacokinetics, PK) and peripheral lymphopenia (pharmacodynamics, PD) in 23 kidney transplant recipients randomized to receive FTY720 (0.25-2.5 mg/day) or mofetil mycophenolate (2 mg/day) in combination with cyclosporine and steroids. FTY720 dose, blood concentrations and lymphocyte counts were determined weekly before and 4 to 12 weeks after transplantation. The effect of PD was calculated as the absolute lymphocyte count or its reductions. PK/PD modeling was used to find the best-fit model. Mean FTY720 concentrations were 0.36 ± 0.05 (0.25 mg), 0.73 ± 0.12 (0.5 mg), 3.26 ± 0.51 (1 mg), and 7.15 ± 1.41 ng/ml (2.5 mg) between 4 and 12 weeks after transplantation. FTY720 PK was linear with dose (r² = 0.98) and showed low inter- and intra-individual variability. FTY720 produced a dose-dependent increase in mean percent reduction of peripheral lymphocyte counts (38 vs 42 vs 56 vs 77, P < 0.01, respectively). The simple Emax model [E = (Emax * C)/(C + EC50)] was the best-fit PK/PD modeling for FTY720 dose (Emax = 87.8 ± 5.3% and ED50 = 0.48 ± 0.08 mg, r² = 0.94) or concentration (Emax = 78.3 ± 2.9% and EC50 = 0.59 ± 0.09 ng/ml, r² = 0.89) vs effect (% reduction in peripheral lymphocytes). FTY720 PK/PD is dose dependent and follows an Emax model (EC50 = 0.5 mg or 0.6 ng/ml). Using lymphopenia as an FTY720 PD surrogate marker, high % reductions (~80%) in peripheral lymphocytes are required to achieve best efficacy to prevent acute allograft rejection.
Resumo:
The aim of the present study was to evaluate the impact of a multiple dose regimen of a liposomal formulation of meglumine antimoniate (LMA) on the pharmacokinetics of antimony in the bone marrow of dogs with visceral leishmaniasis and on the ability of LMA to eliminate parasites from this tissue. Dogs naturally infected with Leishmania chagasi received 4 intravenous doses of either LMA (6.5 mg antimony/kg body weight, N = 9), or empty liposomes (at the same lipid dose as LMA, N = 9) at 4-day intervals. A third group of animals was untreated (N = 8). Before each administration and at different times after treatment, bone marrow was obtained and analyzed for antimony level (LMA group) by electrothermal atomic absorption spectrometry, and for the presence of Leishmania parasites (all groups). There was a significant increase of antimony concentration from 0.76 µg/kg wet organ (4 days after the first dose) to 2.07 µg/kg (4 days after the fourth dose) and a half-life of 4 days for antimony elimination from the bone marrow. Treatment with LMA significantly reduced the number of dogs positive for parasites (with at least one amastigote per 1000 host cells) compared to controls (positive dogs 30 days after treatment: 0 of 9 in the LMA group, 3 of 9 in the group treated with empty liposomes and 3 of 8 in the untreated group). However, complete elimination of parasites was not achieved. In conclusion, the present study showed that multiple dose treatment with LMA was effective in improving antimony levels in the bone marrow of dogs with visceral leishmaniasis and in reducing the number of positive animals, even though it was not sufficient to achieve complete elimination of parasites.
Resumo:
The effect of proton pump inhibitors and Helicobacter pylori infection on the bioavailability of antibiotics is poorly understood. We determined the effects of 5-day oral administration of 60 mg lansoprazole on the bioavailability of clarithromycin in individuals with and without H. pylori infection. Thirteen H. pylori-infected and 10 non-infected healthy volunteers were enrolled in a study with an open-randomized two-period crossover design and a 21-day washout period between phases. Plasma concentrations of clarithromycin in subjects with and without lansoprazole pre-treatment were measured by liquid chromatography coupled to a tandem mass spectrometer. Clarithromycin Cmax and AUC0-10 h were significantly reduced after lansoprazole administration. In addition, lansoprazole treatment of the H. pylori-positive group resulted in a statistically significant greater reduction in Cmax (40 vs 15%) and AUC0-10 h (30 vs 10%) compared to lansoprazole-treated H. pylori-negative subjects. Thus, treatment with lansoprazole for 5 days reduced bioavailability of clarithromycin, irrespective of H. pylori status. This reduction, however, was even more pronounced in H. pylori-infected individuals.
Resumo:
The effects of schistosomiasis on microsomal enzymes were studied on post-infection day 90 when accumulated damage and fibrosis are most intense but granulomatous reaction around the eggs harbored in the liver is smaller than during the earlier phases. Swiss Webster (SW) and DBA/2 mice of either sex (N = 12 per sex per group) were infected with 100 Schistosoma mansoni cercariae on postnatal day 10 and killed on post-infection day 90. Cytochrome P-450 (CYP) concentration and alkoxyresorufin-O-dealkylases (EROD, MROD, BROD, and PROD), p-nitrophenol-hydroxylase (PNPH), coumarin-7-hydroxylase (COH), and UDP-glucuronosyltransferase (UGT) activities were measured in hepatic microsomes. Age-matched mice of the same sex and strain were used as controls. In S. mansoni-infected mice, CYP1A- and 2B-mediated activities (control = 100%) were reduced in SW (EROD: male (M) 36%, female (F) 38%; MROD: M 38%, F 39%; BROD: M 46%, F 19%; PROD: M 50%, F 28%) and DBA/2 mice (EROD: M 64%, F 58%; MROD: M 60%; BROD: F 49%; PROD: M 73%) while PNPH (CYP2E1) was decreased in SW (M 31%, F 38%) but not in DBA/2 mice. COH did not differ between infected and control DBA/2 and UGT, a phase-2 enzyme, was not altered by infection. In conclusion, chronic S. mansoni infection reduced total CYP content and all CYP-mediated activities evaluated in SW mice, including those catalyzed by CYP2E1 (PNPH), CYP1A (EROD, MROD) and 2B (BROD, PROD). In DBA/2 mice, however, CYP2A5- and 2E1-mediated activities remained unchanged while total CYP content and activities mediated by other CYP isoforms were depressed during chronic schistosomiasis.
Resumo:
Personalized pharmacogenomics aims to use individual genotypes to direct medical treatment. Unfortunately, the loci relevant for the pharmacokinetics and especially the pharmacodynamics of most drugs are still unknown. Moreover, we still do not understand the role that individual genotypes play in modulating the pathogenesis, the clinical course and the susceptibility to drugs of human diseases which, although appearing homogeneous on the surface, may vary from patient to patient. To try to deal with this situation, it has been proposed to use interpopulational variability as a reference for drug development and prescription, leading to the development of "race-targeted drugs". Given the present limitations of genomic knowledge and of the tools needed to fully implement it today, some investigators have proposed to use racial criteria as a palliative measure until personalized pharmacogenomics is fully developed. This was the rationale for the FDA approval of BiDil for treatment of heart failure in African Americans. I will evaluate the efficacy and safety of racial pharmacogenomics here and conclude that it fails on both counts. Next I shall review the perspectives and the predicted rate of development of clinical genomic studies. The conclusion is that "next-generation" genomic sequencing is advancing at a tremendous rate and that true personalized pharmacogenomics, based on individual genotyping, should soon become a clinical reality.