52 resultados para porous biomaterials
Resumo:
This article gives an overview of polymer materials used for lead separation and preconcentration. Different kinds of polymer resins, commercial or not, are cited as well as the most used functional groups attached to polymer backbones. The synthesis of these resins and conditions of lead adsorption and elution are remarked. The influence of the porous structure of the polymer on the resines performance is described as well as the use of spacer arms.
Resumo:
This paper discusses different aspects related to the application of electrochemical impedance spectroscopy (EIS) in the study of heterogeneous electrochemical reactions occurring on Dimensionally Stable anodes (DSA®). The most relevant aspects of the semiconductor/electrolyte interface, the application of the EIS classical equivalent circuit approach and the ac porous model in DSA are presented. The paper shows that DSA type electrodes can be consistently investigated by using the ac porous model and an analysis is presented showing the advantage of applying this kind of approach to study heterogeneous reactions on DSA electrodes. Furthermore, some preliminary results on Ti/Ru0,3Ti(0,7-x)Sn x O2 based electrodes are presented to exemplify the use of the ac porous model analysis.
Resumo:
Titanium is an attractive material for structural and biomedical applications because of its excellent corrosion resistance, biocompatibility and high strength-to-weight ratio. The high reactivity of titanium in the liquid phase makes it difficult to produce it by fusion. Powder metallurgy has been shown to be an adequate technique to obtain titanium samples at low temperatures and solid-phase consolidation. The production of compacts with different porosities obtained by uniaxial pressing and vacuum sintering is briefly reviewed. Powder particle size control has been shown to be very important for porosity control. Sample characterization was made using scanning electron microscopy (SEM) images.
Resumo:
Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.
Resumo:
The development of an array of chemically-responsive dyes on a porous membrane and in its use as a general sensor for odors and volatile organic compounds (VOCs) is reviewed. These colorimetric sensor arrays (CSA) act as an "optoelectronic nose" by using an array of multiple dyes whose color changes are based on the full range of intermolecular interactions. The CSA is digitally imaged before and after exposure and the resulting difference map provides a digital fingerprint for any VOC or mixture of odorants. The result is an enormous increase in discriminatory power among odorants compared to prior electronic nose technologies. For the detection of biologically important analytes, including amines, carboxylic acids, and thiols, high sensitivities (ppbv) have been demonstrated. The array is essentially non-responsive to changes in humidity due to the hydrophobicity of the dyes and membrane.
Resumo:
The osseointegrated titanium implants are reliable and safe alternatives to treatments for long periods of time. For surface modification, thermal aspersion of TiO2 was used. The samples with and without TiO2 were treated with NaOH and SBF in order to obtain a layer of HA. Characterization was done by SEM and FTIR. The images of HA obtained by SEM show a uniform morphology and a porous structure with spherical particles. The IR spectra show that the surface of Ticp/ TiO2 is more favorable for the HA deposit, as can be seen by the increase of the crystalline structure and the very intense and defined bands of the OH group of HA that is verified about 3571 and 630 cm-1. Thus the Ticp/ TiO2 surface presents a satisfactory nucleation of HA when compared to Ticp.
Resumo:
This article describes the construction and optimization of an inexpensive apparatus for the production of uniform and porous chitosan microspheres. It also describes the control of the main operational parameters and strategies for the production of uniform chitosan microspheres.
Resumo:
In this work Fenton and photo-Fenton processes for textile dye degradation were investigated using iron (II) immobilized in alginate spheres. Photomicrographs obtained by scanning electron microscopy showed an irregular and porous surface with a homogeneous distribution of iron. The Fenton process was used to evaluate the degradation efficiency of reactive dyes and this procedure showed a low degradation effect. The association of artificial visible light or solar radiation in the Fenton process (foto-Fenton process) showed degradation ratios of 70 and 80% respectively in 45 min. It was also observed that the iron-alginate matrix can be reused.
Resumo:
The importance of chitosan has grown significantly over the last two decades due to its renewable and biodegradable source, and also because of the recent increase in the knowledge of its functionality in the technological and biomedical applications. The present article reviews the biopolymer chitosan and its derivatives as versatile biomaterials for potential drug delivery systems, as well as tissue engineering applications, analgesia and treatment of arthritis.
Resumo:
Porous ceramic materials based on calcium phosphate compounds (CPC) have been studied aiming at different biomedical applications such as implants, drug delivery systems and radioactive sources for brachytherapy. Two kinds of hydroxyapatite (HAp) powders and their ceramic bodies were characterized by a combination of different techniques (XRF, BET method, SEM, ICP/AES and neutron activation analysis - NAA) to evaluate their physico-chemical and microstructural characteristics in terms of chemical composition, segregated phases, microstructure, porosity, chemical and thermal stability, biodegradation and incorporation of substances in their structures. The results revealed that these systems presented potential for use as porous biodegradable radioactive sources able to be loaded with a wide range of radionuclides for cancer treatment by the brachytherapy technique.
Resumo:
Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.
Resumo:
Porous carbons have received great attention because of their potential use as adsorbents, sensors, catalytic supports and others. Among the available methods for preparing these solids, the sequential templating emerges as an efficient way to tail carbon materials, with large specific surface areas, high porosity, controlled narrow pore size distribution and different functional groups. The template process is based on the infiltration of carbon precursors into the pores of inorganic frameworks. This work reviews the most important variables involved in the sequential template process to prepare micro, meso and macroporous carbon with tailored properties as well as their applications.
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
This work proposes the study of heterogeneous photocatalysis using TiO2 impregnated in zeolites beta, ZSM-5, mordenite, NaXb, NaXp and NaY for the decomposition of methylene blue. The catalysts were characterized by XRD, IR, textural analyses by N2 adsorption, SEM, DRS and the reaction of decomposition was monitored by UV visible. The results indicated that didn't have structural changes in the catalysts after Ti impregnations, only in the case of NaY and NaX zeolites. The better photocatalyst to metylene blue decomposition was beta/Ti zeolite due had one structure more accessible (with bigger porous) helping in TiO2 dispersion and catalytic active.
Resumo:
The present paper aims to interpret the SO2 diffusion mechanism process for two different limestones: a calcite and a dolomite. In previous study, the apparent activation energies for sulfation reaction were between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite. Using nitrogen porosimetry it was possible to observe that the dolomite presents mesopores of 0.03 μm, while the calcite presents mesopores of 0.01 μm. The evaluation of limestones porous structure together with their kinetic parameters, allowed concluding that the diffusion mechanism follows Fick law and Knudsen law for dolomite and calcite, respectively.