37 resultados para plant protein sources


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacteria are a very important group in aquatic systems, particularly in eutrophic waters. Therefore studies about their success in the environment are essential. Many hypotheses have tried to explain the dominance of Cyanobacteria, and several emphasized the importance of various nitrogen sources for the success of the group. In this study, we measured the effect of ammonium and nitrate on the growth and protein concentration of Microcystis viridis (Cyanobacteria). This species is well-known because bloom formation in eutrophic waters. The study was carried out, in experimental batch cultures, using the WC medium with different nitrogen sources: ammonium, nitrate, ammonium + nitrate (50% ammonium + 50% nitrate) and ammonium at different concentrations (to test for possible NH4+ toxicity). Protein, ammonium and nitrate concentrations were measured at end of each experiment, whereas samples for cell counts were taken daily. Results showed that Microcystis viridis grew faster with ammonium (µ = 0.393 day-1) than with nitrate (µ = 0.263 day-1) and ammonium + nitrate (µ = 0.325 day-1). This pattern is explained by the metabolism of ammonium that presents higher uptake and assimilation rates than nitrate. Maximum cell concentration, however, was higher in the ammonium + nitrate treatment, followed by nitrate treatment. Higher protein concentration were observed in the treatment with nitrate. In the ammonium toxicity test, no difference between the control and NH4+ at 50% was found. Thus, the ammonium concentrations used in these experiments were not toxic. Our results suggest that Cyanobacteria is able to grow on both nitrogen sources even if ammonium may allow faster growth and bloom development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV) is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22). Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of bovine insulin in plants, much effort has been devoted to the characterization of these proteins and elucidation of their functions. We report here the isolation of a protein with similar molecular mass and same amino acid sequence to bovine insulin from developing fruits of cowpea (Vigna unguiculata) genotype Epace 10. Insulin was measured by ELISA using an anti-human insulin antibody and was detected both in empty pods and seed coats but not in the embryo. The highest concentrations (about 0.5 ng/µg of protein) of the protein were detected in seed coats at 16 and 18 days after pollination, and the values were 1.6 to 4.0 times higher than those found for isolated pods tested on any day. N-terminal amino acid sequencing of insulin was performed on the protein purified by C4-HPLC. The significance of the presence of insulin in these plant tissues is not fully understood but we speculate that it may be involved in the transport of carbohydrate to the fruit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high number of cassava cultivars adapted to many different regions provides a wide variation in the chemical composition of cassava leaves meal (CLM). Therefore, the contents of some nutrients in CLM from five cultivars at three ages of the plant were investigated in order to select the cultivars and ages with superior levels of these nutrients. When the plants were 12 months old, the highest levels of crude protein (CP), beta-carotene, iron, magnesium, phosphorus and sulfur were observed. The IAC 289-70 cv. showed the highest levels of magnesium, as well as considerable contents of CP, beta-carotene, iron, zinc and sulfur, which did not differ statistically from the cultivars showing the highest levels of these nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fruits are important sources of nutrients in human diet, and Barbados Cherry (Malpighia glabra L.) is of particular interest due to its high content of antioxidants. Diets rich in fruits and vegetables protect individuals against diseases and cancer, but excessive intake of vitamins may act as pro-oxidant and generate changes in DNA. To evaluate the effect of different in natura (BAN) and frozen (BAF) Barbados Cherry pulp concentrations and synthetic vitamin C in liquid form (VC) on the chromosome level and the cell cycle division, root meristeme cells of Allium cepa L. and bone marrow cells of Wistar rats Rattus norvegicus, were used as test system. In Allium cepa L., BAN, at the highest concentration (0.4 mg.mL-1) and BAF, at the lowest concentration (0.2 mg.mL-1), inhibited cell division, and there was recovery of cell division after the recovery period in water only for BAN. In the Wistar rats, all treatments with Barbados Cherry, either acute or subchronic, were not cytotoxic or mutagenic; only the highest concentration of VC increased significantly the rate of chromosomal abnormalities. The data obtained are important to reinforce the use of Barbados Cherry fruit in the diet.