79 resultados para optimize
Resumo:
This work describes the development and validation of a dissolution test for 50 mg losartan potassium capsules using HPLC and UV spectrophotometry. A 2(4) full factorial design was carried out to optimize dissolution conditions and potassium phosphate buffer, pH 6.8 as dissolution medium, basket as apparatus at the stirring speed of 50 rpm and time of 30 min were considered adequate. Both dissolution procedure and analytical methods were validated and a statistical analysis showed that there are no significant differences between HPLC and spectrophotometry. Since there is no official monograph, this dissolution test could be applied for quality control routine.
Resumo:
In this study, polymeric nanocapsules of PCL containing the herbicide atrazine were prepared. In order to optimize the preparation conditions, a 2³ factorial design was performed using different formulations of nanocapsules, which investigated the influence of three variables at two levels. The factors varied were the quantities of PCL, Span 60 and Myritol. The results were evaluated considering the size, polydispersity, zeta potential and association rate and the measures of these parameters were taken immediately after preparation and after 30 days of preparation. The formulations with minimum level of polymer in the preparation showed better stability results.
Resumo:
PbO2 films were electroformed onto carbon cloth substrates (twill woven type) in acid conditions using the nitrate precursor by changing the electrodeposition current density, temperature and pH, in order to optimize the formation of the β-PbO2 phase. The crystal structure and morphology of the PbO2 films were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The optimum conditions obtained for formation of the β-PbO2 were presented and discussed.
Resumo:
The sugarcane industry has huge potential for biorefinery concept application, given its development in recent years. In this context, cane sugar straw has become an attractive raw material for biofuel production. This study aims to investigate the chemical composition of cane sugar straw from different regions of Brazil, and to optimize a hydrothermal pretreatment stage for cellulosic ethanol production. Results of chemical characterization of the cane sugar straw for the regions assessed indicated little influence of place on straw chemical composition. Hydrothermal pretreatment showed high efficiency in hemicellulose removal. Hydrothermal pretreatments operating with temperatures of 190 and 210 ºC presented satisfactory results, reaching values close to 100% hydrolysis.
Resumo:
The objective of this study was to optimize and validate a solid-liquid extraction method with low-temperature partitioning (SLE/LTP) for the analysis of pesticides. This method was coupled with gas chromatography (GC/ECD) and used to evaluate the degradation of bifenthrin and pirimiphos-methyl in maize grains on exposure to ozone. The optimized SLE/LTP-GC/ECD method is simple, effective and consumes low quantities of the solvent. It can be routinely used for the determination of bifenthrin and pirimiphos-methyl in maize samples. The use of this method of analysis determined that the levels of the insecticides in maize grains were reduced on exposure of the grains to the ozone gas. The observed reduction in the levels of insecticide was directly proportional to the increase in the concentration of the ozone gas.
Resumo:
The purpose of this work was to study four different solvent mixtures intended to increase the yield of the extraction stage of clavulanic acid (CA), which is one of the steps in the purification process. Four central composite rotatable designs (CCRD) were utilized to optimize the solvent mixtures. The variables selected for the factorial design were solvent mixture ratio (mL/mL) and temperature (ºC). The results showed that the yield of CA extracted from fermentation broth with the solvent mixtures of methyl-ethyl-ketone and ethyl acetate, and methyl-isobutyl-ketone and ethyl acetate (44.7 and 50.0%, respectively) was higher than that of the individual ethyl acetate alone (36.5%).
Resumo:
AbstractThe purpose of this study was to evaluate the best operating conditions of ICP OES for the determination of Na, Ca, Mg, Sr and Fe in aqueous extract of crude oil obtained after hot extraction with organic solvents (ASTM D 6470-99 modified). Thus, the full factorial design and central composite design were used to optimize the best conditions for the flow of nebulization gas, the flow of auxiliary gas, and radio frequency power. After optimization of variables, a study to obtain correct classification of the 18 samples of aqueous extract of crude oils (E1 to E18) from three production and refining fields was carried out. Exploratory analysis of these extracts was performed by principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA), using the original variables as the concentration of the metals Na, Ca, Mg, Sr and Fe determined by ICP OES.
Resumo:
Ilex paraguariensis (yerba-mate) is used as a beverage, and its extract requires adequate quality control methods in order to guarantee quality and safe use. Strategies to develop and optimize a chromatographic method to quantify theobromine, caffeine, and chlorogenic acid in I. paraguariensis extracts were evaluated by applying a quality by design (QbD) model and ultra high-performance liquid chromatography (UHPLC). The presence of these three phytochemical markers in the extracts was evaluated using UHPLC-MS and was confirmed by the chromatographic bands in the total ion current traces (m/z of 181.1 [M+H]+, 195.0 [M+H]+, and 353.0 [M−H]−, respectively). The developed method was then transferred to a high-performance liquid chromatography (HPLC) platform, and the three phytochemical markers were used as external standards in the validation of a method for analyses of these compounds in extracts using a diode array detector (DAD). The validated method was applied to quantify the chlorogenic acid, caffeine, and theobromine in the samples. HPLC-DAD chromatographic fingerprinting was also used in a multivariate approach to process the entire data and to separate the I. paraguariensis extracts into two groups. The developed method is very useful for qualifying and quantifying I. paraguariensis extracts.
Resumo:
Ultrasound as a metrology tool has many applications in health care, industrial, and chemical analyses. Ultrasonic techniques are rapid, low-cost, non-invasive, and highly repeatable. Although ultrasound can be used to measure emulsions, no effort had been made thus far to optimize its sensitivity for metrological analysis. In this work, a technique for analyzing oil in water was validated. The wave velocity and attenuation were chosen as the ultrasonic parameters. The technique was implemented in the boundary region established by law for effluents from industrial plants involved with biofuel manufacturing. A technical effort of this study was to establish stable emulsions in concentrations close to the desired limit of study. The phase behaviours of pseudo-ternary oil, sodium chloride, and sodium lauryl sulphate were studied. The composition in the widest region of the diagram allowed for the formation of a stable emulsion, from which the ultrasound measurement was carried out. An analytical curve was obtained using ultrasonic attenuation to determine the content of oils and greases in wastewater ranging 15–240 ppm. The speed of sound did not appear to be an applicable parameter for this application. The technique was demonstrated to be an important alternative solution for the continuous monitoring of wastewater with regard to oil concentrations.
Resumo:
The microencapsulation of palm oil may be a mechanism for protecting and promoting the controlled release of its bioactive compounds. To optimize the microencapsulation process, it is necessary to accurately quantify the palm oil present both external and internal to the microcapsules. In this study, we developed and validated a spectrophotometric method to determine the microencapsulation efficiency of palm oil by complex coacervation. We used gelatin and gum arabic (1:1) as wall material in a 5% concentration (w/v) and palm oil in the same concentration. The coacervates were obtained at pH 4.0 ± 0.01, decanted for 24 h, frozen (−40 ºC), and lyophilized for 72 h. Morphological analyzes were then performed. We standardized the extraction of the external palm oil through five successive washes with an organic solvent. We then explored the best method for rupturing the microcapsules. After successive extractions with hexane, we determined the amount of palm oil contained in the microcapsules using a spectrophotometer. The proposed method was shown to be of low cost, fast, and easy to implement. In addition, in the validation step, we confirmed the method to be safe and reliable, as it proved to be specific, accurate, precise, and robust.
Resumo:
In this work, Doehlert experimental design was used to optimize the Transesterification Double Step Process (TDSP) method of methyl soybean oil biodiesel production which starts with a basic catalysis followed by an acidic catalysis. The conversion values were calculated from NMR spectra. Response surface was used to show the results of the interactions between the variables. This experimental design evaluated variables like catalyst and alcohol amount for the basic catalysis and time and temperature for the acidic catalysis. According to results obtained after Doehlert design application the alcohol amount was the main factor that influenced on the basic catalysis but for the acidic catalysis both time and temperature are important and their effects are opposite. It resulted on excellent conversions for both steps obtaining for the basic catalysis about 100% when was used like optimal conditions catalyst amount equal to 0.40 g and volume of methanol equal to 60 mL and for the acidic catalysis about 99% when was used like optimal conditions temperature of 65 °C and 90 minutes for reaction time.
Resumo:
The possibility of using thiocyanate to determine iron(II) and/or iron(III) in water-acetone mixture has been re-examined as part of a systematic and comparative study involving metallic complexes of pseudohalide ligands. Some parameters that affect the complete oxidation of the ferrous cations, their subsequent complexation and the system stability have been studied to optimize the experimental conditions. Our results show the viability and potentiality of this simply methodology as an alternative analytical procedure to determine iron cations with high sensitivity, precision and accuracy. Studies on the calibration, stability, precision, and effect of various different ions have been carried out by using absorbance values measured at 480 nm. The analytical curve for the total iron determination obeys Beer's law (r = 0.9993), showing a higher sensitivity (molar absorptivity of 2.10x10(4) L cm-1 mol-1) when compared with other traditional systems (ligands) or even with the "similar" azide ion [1.53x10(4) L cm-1 mol-1, for iron-III/azide complexes, in 70% (v/v) tetrahydrofuran/water, at 396 nm]. Under such optimized experimental conditions, it is possible to determine iron in the concentration range from 0.5 to 2 ppm (15-65% T for older equipments, quartz cells of 1.00 cm). Analytical applications have been tested for some different materials (iron ores), also including pharmaceutical products for anemia, and results were compared with atomic absorption determinations. Very good agreement was obtained with these two different techniques, showing the potential of the present experimental conditions for the total iron spectrophotometric determinations (errors < 5%). The possibility of iron speciation was made evident by using another specific and auxiliary method for iron(II) or (III).
Resumo:
Two simple and sensitive spectrophotometric methods (M1 and M2) for the determination of mosapride in pure and in pharmaceutical preparations are described. These methods are based on the interaction of diazotized mosapride (MSP) couples with chromotropic acid (CTA) [M1] in alkaline medium and diphenylamine (DPA) [M2] in acidic medium. The resulting azo-dyes exhibit maximum absorption at 560 nm and at 540 nm for methods M1 and M2, respectively. All variables were studied in order to optimize the reaction conditions. No interferences were observed from excipients, and the validity of the each method was tested against reference method.
Resumo:
A simple, rapid and sensitive spectrophotometric method has been developed for the determination of methyldopa in pharmaceutical formulations. The method is based on the reaction between tetrachloro-p-benzoquinone (p-chloranil) and methyldopa, accelerated by hydrogen peroxide (H2O2), producing a violet-red compound (λmax = 535 nm) at ambient temperature (25.0 ± 0.2 ºC). Experimental design methodologies were used to optimize the measurement conditions. Beer's law is obeyed in a concentration range from 2.10 x 10-4 to 2.48 x 10-3 mol L-1 (r = 0.9997). The limit of detection was 7.55 x 10-6 mol L-1 and the limit of quantification was 2.52 x 10-5 mol L-1. The intraday precision and interday precision were studied for 10 replicate analyses of 1.59 x 10-3 mol L-1 methyldopa solution and the respective coefficients of variation were 0.7 and 1.1 %. The proposed method was successfully applied to the determination of methyldopa in commercial brands of pharmaceuticals. No interferences were observed from the common excipients in the formulations. The results obtained by the proposed method were favorably compared with those given by the Brazilian Pharmacopoeia procedure at 95 % confidence level.
Resumo:
The current study aims to verify the best method for a rapid and efficient extraction of flavonoids from Alpinia zerumbet. Dried leaves were extracted using distillated water and ethanol 70% by extraction methods of shaking maceration, ultrasonic, microwave and stirring. By the application of TLC and reversed-phase HPLC techniques the rutin and kaempferol-3-O-glucuronide were detected. Ethanol 70% was more efficient for flavonoids extraction than water. No significant yielding variation was verified for ultrasonic, microwave and stirring methods using ethanol 70% (11 to 14%). The relative concentration of rutin and kaempferol-3-O-glucuronide, respectively, was higher by ultrasonic (1.5 and 5.62 mg g-1 dried leaves, respectively) and by microwave (1.0 and 6.64 mg g-1 dried leaves) methods using ethanol. Rapid and simplified extraction proceeding optimize phytochemical work and acquisition of secondary metabolites.