138 resultados para multiplatform content provider


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macroporosity is often used in the determination of soil compaction. Reduced macroporosity can lead to poor drainage, low root aeration and soil degradation. The aim of this study was to develop and test different models to estimate macro and microporosity efficiently, using multiple regression. Ten soils were selected within a large range of textures: sand (Sa) 0.07-0.84; silt 0.03-0.24; clay 0.13-0.78 kg kg-1 and subjected to three compaction levels (three bulk densities, BD). Two models with similar accuracy were selected, with a mean error of about 0.02 m³ m-3 (2 %). The model y = a + b.BD + c.Sa, named model 2, was selected for its simplicity to estimate Macro (Ma), Micro (Mi) or total porosity (TP): Ma = 0.693 - 0.465 BD + 0.212 Sa; Mi = 0.337 + 0.120 BD - 0.294 Sa; TP = 1.030 - 0.345 BD 0.082 Sa; porosity values were expressed in m³ m-3; BD in kg dm-3; and Sa in kg kg-1. The model was tested with 76 datum set of several other authors. An error of about 0.04 m³ m-3 (4 %) was observed. Simulations of variations in BD as a function of Sa are presented for Ma = 0 and Ma = 0.10 (10 %). The macroporosity equation was remodeled to obtain other compaction indexes: a) to simulate maximum bulk density (MBD) as a function of Sa (Equation 11), in agreement with literature data; b) to simulate relative bulk density (RBD) as a function of BD and Sa (Equation 13); c) another model to simulate RBD as a function of Ma and Sa (Equation 16), confirming the independence of this variable in relation to Sa for a fixed value of macroporosity and, also, proving the hypothesis of Hakansson & Lipiec that RBD = 0.87 corresponds approximately to 10 % macroporosity (Ma = 0.10 m³ m-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of pig slurry and poultry litter fertilization on soils depends on the conditions of use and the amounts applied. This study evaluated the effect of organic fertilizers after different application periods in different areas on the physical properties and organic carbon contents of a Rhodic Kandiudox, in Concordia, Santa Catarina, in Southern Brazil. The treatments consisted of different land uses and periods of pig and poultry litter fertilization: silage maize (M7 years), silage maize (M20 years), annual ryegrass pasture (P3 years), annual ryegrass pasture (P15 years), perennial pasture (PP20 years), yerba mate tea (Mt20 years), native forest (NF), and native pasture without manure application (P0). The 0-5, 5-10 and 10-20 cm soil layers were sampled and analyzed for total organic carbon, total nitrogen and soil physical properties such as density, porosity, aggregation, degree of flocculation, and penetration resistance. The organic carbon levels in the cultivated areas treated with organic fertilizer were even lower than in native forest soil. The organic fertilizers and studied management systems reduced the flocculation degree of the clay particles, and low macroporosity was observed in some areas. Despite these changes, a good soil physical structure was maintained, e.g., soil density and resistance to penetration were below the critical limits, whereas aggregate stability was high, which is important to reduce water erosion in these areas with rugged terrain in western Santa Catarina, used for pig and poultry farming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR), using a reference value of gravimetric soil water content (U). For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox), at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes); in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD). Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Diagnosis and Recommendation Integrated System (DRIS) can improve interpretations of leaf analysis to determine the nutrient status. Diagnoses by this method require DRIS norms, which are however not known for oil content of soybean seeds. The aims of this study were to establish and test the DRIS method for oil content of soybean seed (maturity group II cultivars). Soybean leaves (207 samples) in the full flowering stage were analyzed for macro and micro-nutrients, and the DRIS was applied to assess the relationship between nutrient ratios and the seed oil content. Samples from experimental and farm field sites of the southernmost Brazilian state Rio Grande do Sul (28° - 29° southern latitude; 52° -53° western longitude) were assessed in two growing seasons (2007/2008 and 2008/2009). The DRIS norms related to seed oil content differed between the studied years. A unique DRIS norm was established for seed oil content higher than 18.68 % based on data of the 2007/2008 growing season. Higher DRIS indices of B, Ca, Mg and S were associated with a higher oil content, while the opposite was found for K, N and P. The DRIS can be used to evaluate the leaf nutrient status of soybean to improve the seed oil content of the crop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies in Brazil have addressed the need for micronutrients of physic nut focusing on physiological responses, especially in terms of photosynthesis. The objective of this study was to evaluate the effects of omission of boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) on Jatropha curcas L.. The experimental design was a randomized block with four replications. The treatments were complete solution (control) and solution without B, Cu, Fe, Mn, and Zn. We evaluated the chlorophyll content (SPAD units), photosynthetic rate, dry matter production and accumulation of micronutrients in plants, resulting from different treatments. The first signs of deficiency were observed for Fe and B, followed by Mn and Zn, while no symptoms were observed for Cu deficiency. The micronutrient omission reduced the dry matter yield, chlorophyll content and photosynthetic rate of the plants differently for each omitted nutrient. It was, however, the omission of Fe that most affected the development of this species in all parameters evaluated. The treatments negatively affected the chlorophyll content, evaluated in SPAD units, and the photosynthetic rate, except for the omission of B. However this result was probably due to the concentration effect, since there was a significant reduction in the dry matter production of B-deficient plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P) content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM), Santa Maria (RS). The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf), subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC), and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Diffuse reflectance spectroscopy (DRS) is a fast and cheap alternative for soil clay, but needs further investigation to assess the scope of application. The purpose of the study was to develop a linear regression model to predict clay content from DRS data, to classify the soils into three textural classes, similar to those defined by a regulation of the Brazilian Ministry of Agriculture, Livestock and Food Supply. The DRS data of 412 soil samples, from the 0.0-0.5 m layer, from different locations in the state of Rio Grande do Sul, Brazil, were measured at wavelengths of 350 to 2,500 nm in the laboratory. The fitting of the linear regression model developed to predict soil clay content from the DRS data was based on a R2 value of 0.74 and 0.75, with a RMSE of 7.82 and 8.51 % for the calibration and validation sets, respectively. Soil texture classification had an overall accuracy of 79.0 % (calibration) and 80.9 % (validation). The heterogeneity of soil samples affected the performance of the prediction models. Future studies should consider a previous classification of soil samples in different groups by soil type, parent material and/or sampling region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of genetics and environmental factors on isoflavone content of soybean (Glycine max L.) cultivars grown in different locations in Brazil in 1993/94 were evaluated. Seeds of different cultivars were analised by high performance liquid chromatography (HPLC). In Rio Grande do Sul (RS), Paraná (PR), and Mato Grosso do Sul (MS) States, a significant difference in the isoflavone total content average of the cultivars IAS 5 and FT-Abyara (163.9, 116.4 and 79.5 mg/100 g, respectively) was observed. In general, IAS 5 contained higher isoflavone than FT-Abyara. Cultivars IAS 5 and FT-Abyara grown at Vacaria, RS (28°30' S latitude) with temperature average of 19°C, had the highest isoflavone concentrations (218.7 and 163.8 mg/100 g, respectively). In Palotina, PR (24°27' S latitude), where temperature average was 24°C, the isoflavone concentrations were 105.9 and 86.8 mg/100 g, respectively. The lowest isoflavone contents were observed for FT-Estrela and FT-Cristalina, (27.6 and 46.5 mg/100 g, repectively) at Rondonópolis, MT (16°20' S latitude), where the temperature was 27°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effects of selection for high protein on seed physiological quality and grain yield of soybean. Four populations of BC1F4 and four of F4, each from a cross between a commercial variety and a line bearing high protein seeds, were used. The high protein content selection has a tendency to affect negatively the seed physiological quality. Estimates of correlation coefficients between protein content and grain yield were mostly negative but varied among populations. It is possible to obtain lines with high protein content, keeping the grain yield and the seed physiological quality of their respective recurrent progenitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to study the response to water stress of a drought sensitive soybean cultivar inoculated with Bradyrhizobium japonicum (strain CB1809, Semia 586) and B. elkanii (strain 29W, Semia 5019). CB1809 nodulated plants produced a significantly higher root fraction (19%) than 29W (14.6%). Plants inoculated with CB1809 produced less nodules and accumulated more nitrogen than those inoculated with 29W. In general, low amounts of ureides in nodules were found in watered plants inoculated with either CB1809 or 29W strains, but those levels were five-fold increased in stressed plants inoculated with CB1809. Nodules formed by strain CB1809 had aspartate and glutamate as major amino acids, while those formed by 29W had glutamate, asparagine and alanine. In nodules of plants inoculated with CB1809 aspartate showed the highest accumulation (5 µmol g-1); in stressed plants this amino acid reached a value of 26 µmol g-1, and asparagine was not detected. Nodules formed by the strain 29W accumulated 1 µmol g-1 of aspartate, whether plants were stressed or not. Asparagine was the major amino acid found in nodules from watered plants (6 µmol g-1) and the amount of this amino acid was six-fold increased when plants were water stressed.