34 resultados para moving particle tracking
Resumo:
Breeding for high and low hypothermic responses to systemic administration of a serotonin1A (5-HT1A) receptor agonist (8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT) has resulted in high DPAT-sensitive (HDS) and low DPAT-sensitive (LDS) lines of rats, respectively. These lines also differ in several behavioral measures associated with stress. In the present microdialysis study we observed that basal 5-HT concentrations in the prefrontal cortex and dorsal hippocampus did not differ significantly between HDS and LDS rats. Thus, behavioral differences between the HDS and LDS lines might not be attributed to differences in basal 5-HT release. However, both lines had lower basal levels of 5-HT release than their randomly bred control group (random DPAT-sensitive, RDS) in the prefrontal cortex (mean ± SEM, pg/20 µl, was 3.0 ± 0.4 for LDS, 3.8 ± 0.3 for HDS and 6.4 ± 0.6 for RDS; F(2,59) = 5.8, P<0.005). The administration of (±)-fenfluramine (10 mg/kg) induced a greater increase in hippocampal 5-HT levels in HDS rats (500%) as compared with LDS (248%) or RDS (243%) rats (P<0.0001). There were no significant differences in the prefrontal cortex among lines, with a fenfluramine-induced 5-HT increase of about 900% in the three groups. This differential response to fenfluramine may be due to functional alterations of hippocampal 5-HT reuptake sites in the HDS line.
Resumo:
The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg) and inorganic (mercury chloride, HgCl 2 ) forms of mercury on in vivo dopamine (DA) release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g) rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group) into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM) and delayed increase in DA levels (75 min after the beginning of perfusion). Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 ). These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.
Resumo:
Wear particles are phagocytosed by macrophages and other inflammatory cells, resulting in cellular activation and release of proinflammatory factors, which cause periprosthetic osteolysis and subsequent aseptic loosening, the most common causes of total joint arthroplasty failure. During this pathological process, tumor necrosis factor-alpha (TNF-α) plays an important role in wear-particle-induced osteolysis. In this study, recombination adenovirus (Ad) vectors carrying both target genes [TNF-α small interfering RNA (TNF-α-siRNA) and bone morphogenetic protein 2 (BMP-2)] were synthesized and transfected into RAW264.7 macrophages and pro-osteoblastic MC3T3-E1 cells, respectively. The target gene BMP-2, expressed on pro-osteoblastic MC3T3-E1 cells and silenced by the TNF-α gene on cells, was treated with titanium (Ti) particles that were assessed by real-time PCR and Western blot. We showed that recombinant adenovirus (Ad-siTNFα-BMP-2) can induce osteoblast differentiation when treated with conditioned medium (CM) containing RAW264.7 macrophages challenged with a combination of Ti particles and Ad-siTNFα-BMP-2 (Ti-ad CM) assessed by alkaline phosphatase activity. The receptor activator of nuclear factor-κB ligand was downregulated in pro-osteoblastic MC3T3-E1 cells treated with Ti-ad CM in comparison with conditioned medium of RAW264.7 macrophages challenged with Ti particles (Ti CM). We suggest that Ad-siTNFα-BMP-2 induced osteoblast differentiation and inhibited osteoclastogenesis on a cell model of a Ti particle-induced inflammatory response, which may provide a novel approach for the treatment of periprosthetic osteolysis.
Resumo:
Egg yolk was partially replaced (0, 25, 50, 75, and 100%) with octenyl succinic anhydride (OSA)-modified potato starch in a reduced-fat mayonnaise formulation to curtail the problems associated with high cholesterol and induced allergic reactions. The physicochemical properties included parameters such as: pH, fat content, and emulsion stability of the formulations analyzed. The samples with 75% and 100% egg yolk substitute showed the maximum emulsion stability (>95% after two of months storage), and they were selected according to cholesterol content, particle size distributions, dynamic rheological properties, microstructure, and sensory characteristic. A significant reduction (84-97%) in the cholesterol content was observed in the selected samples. Particle size analysis showed that by increasing the amount of OSA starch, the oil droplets with the peak size of 70 µm engulfed by this compound became larger. The rheological tests elucidated that in the absence of egg yolk, OSA starch may not result in a final product with consistent texture and that the best ratio of the two emulsifiers (OSA starch/egg yolk) to produce stable reduced-fat, low cholesterol mayonnaise is 75/25. The microscopic images confirmed the formation of a stable cohesive layer of starch surrounding the oil droplets emulsified in the samples selected.