82 resultados para metal transfer
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
This work reports on the synthesis, characterization (infrared and hidrogen nmr spectra) and photophysical properties (luminescence spectra and emission quantum yield) of the lanthanide cryptates [LnÌ(bipy)2py(CO2Et) 2]3+ with Ln = Eu3+, Tb3+ or Gd3+, which can be applied as efficient Light-Conversion-Molecular-Devices. From emission spectra of [EuÌ(bipy)2py(CO2Et) 2]3+ it was possible to assign C3 symmetry to the metal ion. The spectroscopic studies show a higher emission quantum yield (q=25%) for [TbÌ(bipy)2py(CO2Et) 2]3+ in aqueous solution, whereas the europium cryptate presents q=14%. This is justified by a more efficient energy transfer between triplet and emission levels of terbium (T->5D4).
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
Trophic transfer of trace elements along marine food chains has been recognized as an important process influencing metal and metalloid bioaccumulation. The trophic transfer of mercury was observed between trophic levels from prey (considering fish with different feeding habits and squid) to top predator (dolphin) in a Northern coastal food chain of Rio de Janeiro. Selenium showed some evidence of trophic transfer between lower trophic levels. Dolphin presented the highest mercury concentrations whereas the benthic carnivorous fish showed the highest selenium concentrations. Mercury is biomagnified through the food chain while selenium does not present the same behavior.
Resumo:
A series of Group VIII metal catalysts was obtained for the semi-hydrogenation of styrene. Catalysts were characterized by Hydrogen Chemisorption, TPR and XPS. Palladium, rhodium and platinum low metal loading prepared catalysts presented high activity and selectivity (ca. 98%) during the semi-hydrogenation of styrene, being palladium the most active catalyst. The ruthenium catalyst also presented high selectivity (ca. 98%), but the lowest activity. For the palladium catalyst, the influence of the precursor salt and of the reduction temperature on the activity and selectivity were studied. The following activity series was obtained: PdN-423 > PdCl-673 > PdCl-373> PtCl-673 > RhCl-673 >> RuCl-673. As determined by XPS, differences in activity could be attributed, at least in part, to electronic effects.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
An efficient flotation method based on the combination of flame atomic absorption spectrometry (FAAS) and separation and preconcentration step for determination of Cr3+, Cu 2+, Co2+, Ni2+, Zn2+, Cd 2+, Fe3+ and Pb2+ ions in various real samples by the possibility of applying bis(2-hydroxyacetophenone)-1,4-butanediimine (BHABDI) as a new collector was studied. The influence of pH, amount of BHABDI as collector, sample matrix, type and amount of eluting agent, type and amount of surfactant as floating agent, ionic strength and air flow rates i.e. variables affecting the efficiency of the extraction system was evaluated. It is ascertained that metal ions such as iron can be separated simultaneously from matrix in the presence of 0.012 mM ligand, 0.025% (w/v) of CTAB to a test sample of 750 mL at pH 6.5. These ions can be eluted quantitatively with 6 mL of 1.0 mol L-1 HNO3 in methanol which lead to the enrichment factor of 125. The detection limits for analyte ions were in the range of 1.3-2.4 ng mL-1. The method has been successfully applied for determination of trace amounts of ions in various real samples.
Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation
Resumo:
Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated by the sediment and that the collector organisms as Chironomus species accumulated higher concentration of metals than the predator organisms.
Resumo:
The present paper describes the effect of metals ions on the in vitro availability of enoxacin (a second generation quinolone antibiotic) owing to drug-metal interaction. These interaction studies were performed at 37 °C in different pH environments simulating human body compartments and were studied by UV spectroscopic technique. In order to determine the probability of these reactions different kinetic parameters (dissolution constants (K) and free energy change (ΔG)) for these reactions were also calculated. It is proposed that the structure of enoxacin contains various electron donating sites which facilitate its binding with metallic cations forming chelates. Hence taking food products, nutritional supplements or multivitamins containing multivalent cations at the same time as enoxacin, could reduce the absorption of the drug into the circulation and thus would decrease the effectiveness of the drug. In addition, the MIC of enoxacin for various microorganisms before and after interaction with metal ions was calculated which in most cases was increased which possibly could impair the clinical efficacy of the drug.
Resumo:
A study of the different hydrocarbon reactions over Ni doped WO3-ZrO2 catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane) increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition.
Resumo:
Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
The stability constants of the 1:1 complexes formed between M2+ (M2+: Mn2+, Ni2+, Cu2+, or Cd2+) and BMADA2- (BMADA: 2,2'-(5-bromo-6-methylpyrimidine-2,4 diyl)bis(azanediyl)dipropanoic acid) were determined by potentiometric pH titration in aqueous solution (I = 0.1 mol L-1, NaNO3, 25 °C). The stability of the binary M - BMADA complexes is determined by the basicity of the carboxyl or amino groups. All the stability constants reported in this work exhibit the usual trend, and the order obtained was Mn2+< Ni2+ < Cu2+ > Cd2+. The observed stability order for BMADA approximately follows the Irving - Williams sequence. In the M - BMADA complexes, the M ion is able to form a macrochelate via the pyrimidine group of BMADA.
Resumo:
The chemical kinetics of sugarcane filter cake (FC) organic matter degradation at rates (0, 40, 80, and 120 t ha-1) in non-contaminated and different degrees of cadmium-contaminated Oxisol (0.19, 28, 56, 112 and 200 mg Cd kg-1) and DTPA-extractable Cd was studied. FC degradation was determined by quantifying CO2 emitted from soil samples during 72 days of incubation. DTPA-extractable Cd was performed after the incubation period. FC degradation was described by a two-stage equation of chemical kinetics. FC degradation rates were between 15 and 33%. Total CO2 emitted from FC declined with increasing degree in Cd-contamination and the DTPA-extractable Cd declined with FC rates.
Resumo:
The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.