122 resultados para mercury remediation
Resumo:
Phlebotominae sand fly specimens were prepared for histological and physiological studies. Different fixatives were tested on sectioned and whole bodied adult females in order to obtain good fixation and provide satisfactory penetration of the embedding media. All fixed specimens were infiltrated (up to seven days under 5ºC) and embedded in hydroxyethyl metacrylate. Two-three µm sections were stained, mounted in Canada balsam and observed by light microscopy. Best results were achieved when whole bodied insects were double fixed in Bouin's and Carnoy's fluids (4 h/2 h) and stained in Hematoxilin/Eosin or fixed in calcium formaldehyde and stained in mercury bromophenol blue.
Resumo:
Pediculosis seems to have afflicted humans since the most ancient times and lice have been found in several ancient human remains. Examination of the head hair and pubic hair of the artificial mummy of Ferdinand II of Aragon (1467-1496), King of Naples, revealed a double infestation with two different species of lice, Pediculus capitis, the head louse, and Pthirus pubis, the pubic louse. The hair samples were also positive for the presence of mercury, probably applied as an anti-pediculosis therapy. This is the first time that these parasites have been found in the hair of a king, demonstrating that even members of the wealthy classes in the Renaissance were subject to louse infestation.
Resumo:
For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac) as well as to phenol (PhVac). The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05). The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05). The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.
Resumo:
Syphilis is a chronic infection that is categorized by a three-stage progression. The tertiary stage may affect bones and produce distinctive skull lesions called caries sicca. This paper aims to present an unusual case of syphilis associated with a diagnosis of cirrhosis, which was recorded as the cause of death in a 28-year-old female in 1899. The appearance and distribution of the lesions were compatible with acquired syphilis, as observed in the skull from the Medical Schools Collection of the University of Coimbra. However, the cause of death was recorded as "hypertrophic cirrhosis of the liver", this is a condition that is compatible with several liver disorders, including a primary liver disorder, such as cirrhosis provoked by alcoholism, infection of the liver by syphilis pathogens or by damage to the liver from the use of mercury compounds, which was the common treatment for syphilis at the time. This paper represents a contribution to the understanding of the natural evolution of syphilis.
Resumo:
Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. 14C labeled glucose with or without 200 mg kg-1 of NH4+-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m-1 (low EC; LEC) and 6.72 dS m-1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO2 and 14CO2 were monitored. Approximately 60 % of the glucose-14C added to LEC soil evolved as 14CO2, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg 14C was extractable from LEC soil, but > 500 mg 14C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH4+-N. The NO2- and NO3- concentrations were on average higher in LEC than in HEC soil, with exception of NO2- in HEC amended with NH4+-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil.
Resumo:
Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.
Resumo:
The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum) and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil). Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight), height, and number of bacteria in the soil (pots with or without plants). Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05) and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.
Resumo:
Efficient analytical methods for the quantification of plant-available Zn contained in mineral fertilizers and industrial by-products are fundamental for the control and marketing of these inputs. In this sense, there are some doubts on the part of the scientific community as well as of the fertilizer production sector, whether the extractor requested by the government (Normative Instruction No. 28, called 2nd extractor), which is citric acid 2 % (2 % CA) (Brasil, 2007b), is effective in predicting the plant availability of Zn via mineral fertilizers and about the agronomic significance of the required minimal solubility of 60 % compared to the total content (HCl) (Brasil, 2007a). The purpose of this study was to evaluate the alternative extractors DTPA, EDTA, neutral ammonium citrate (NAC), buffer solution pH 6.0, 10 % HCl, 10 % sulfuric acid, 1 % acetic acid, water, and hot water to quantify the contents of Zn available for maize and compare them with indices of agronomic efficiency of fertilizers and industrial by-products when applied to dystrophic Clayey Red Latosol and Dystrophic Alic Red Yellow Latosol with medium texture. The rate of Zn applied to the soil was 5 mg kg-1, using the sources zinc sulfate, commercial granular zinc, ash and galvanic sludge, ash and two brass slags. Most Zn was extracted from the sources by DTPA, 10 % HCl, NAC, 1% acetic acid, and 10 % sulfuric acid. Recovery by the extractors 2 % CA, EDTA, water, and hot water was low. The agronomic efficiency index was found to be high when using galvanic sludge (238 %) and commercial granular zinc (142 %) and lower with brass slag I and II (67 and 27 %, respectively). The sources galvanizing ash and brass ash showed solubility lower than 60 % in 2 % CA, despite agronomic efficiency indices of 78 and 125 %, respectively. The low agronomic efficiency index of industrial by-products such as brass slag I and galvanizing ash can be compensated by higher doses, provided there is no restriction, as well as for all other sources, in terms of contaminant levels of arsenic, cadmium, chromium, lead, and mercury as required by law (Normative Instruction No 27/2006). The implementation of 2nd extractor 2 % CA and the requirement of minimum solubility for industrial by-products could restrict the use of alternative sources as potential Zn sources for plants.
Resumo:
ABSTRACT High contents of plant-available selenium in the soil in the form of selenate, resulting from natural or anthropogenic action, jeopardizes agricultural areas and requires research for solutions to establish or re-establish agricultural or livestock operation, avoiding the risk of poisoning of plants, animals and humans. The purpose was to evaluate sulfur sources in the form of sulfate, e.g., ammonium sulfate, calcium sulfate, ferric sulfate, in the remediation of tropical soils anthropogenically contaminated with Se under the tropical forage grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf cv. Marandu. More clayey soils are less able to supply plants with Se, which influences the effects of S sources, but it was found that high soil Se concentrations negatively affected forage biomass production, regardless of the soil. Of the tested S sources, the highly soluble ammonium sulfate and ferric sulfate reduced plant Se uptake and raised the available sulfur content in the soil.
Resumo:
This paper reviews the history of Hg contamination in Brazil by characterizing and quantifying two major sources of Hg emissions to the environment: industrial sources and gold mining. Industry was responsible for nearly 100% of total Hg emissions from the late 1940's to the early 1970's, when efficient control policies were enforced, leading to a decrease in emissions. Gold mining, on the other hand was nearly insignificant as a Hg source up to the late 1970's, but presently is responsible for over 80% of total emissions. Presently, over 115 tons of Hg are released into the atmosphere in Brazil annually. Nearly 78 tons come from gold mining operations, 12 tons come from chlor-alkali industry and 25 tons come from all other industrial uses. Inputs to soils and waters however, are still unknown, due to lack of detailed data base. However, emissions from diffuse sources rather than well studied classical industrial sources are probably responsible for the major inputs of mercury to these compartments.
Resumo:
Mercury kept in a garage of a residencial building in Rio de Janeiro was accidentally released and caused local (environmental and human) contamination. The concentration of mercury in indoor air of the most critical site reached 15.5 mg/m³. Outdoor air samples showed concentrations ranging from 0.37 to 6.6 mg/m³ . Seventy five per cent of the urine samples collected from 22 residents in the contaminated building showed levels of mercury higher than those observed in non exposed individuals (>6.9 mg/L); in 30% of these samples, the concentration was higher than 20 mg/L. These values show a high level of human contamination and the final consequences were not so serious owing to the quick action taken by one of the residents.
Resumo:
Paracelsus (1493 - 1541) developed a theory about three principles (sulphur, mercury, and salt) that would constitute matter, and whose mutual interactions within man's body could cause diseases. This paper discusses the influence of this theory on the work of two chemical philosophers. Oswald Crollius (1560 - 1609) considered that the conceptions of matter and disease were strongly related because of the macro - microcosm analogy, and classified diseases in sulphurean, mercurial and saline. On the other hand, J. B. Van Helmont (1579 - 1644) stated that sulphur, mercury, and salt were not true principles, and that every disease would have a specific origin. Instead of the principles, Van Helmont put the Archeus at the center of both his medical and matter theories.
Resumo:
Results of two intercomparison exercises are reported. In the first one, the participants were asked to determine Cd, Cu, Pb and Zn, at the sub mg mL-1 level, in an acidified aqueous solution. In the second one, the participants were asked to determine mercury (total) in two homogeneous biological samples, hair and fish. The exercises were considered satisfactory and few reported results were discharged (3s criteria).
Resumo:
In the selective reduction procedure proposed by Magos SnCl2 was used as reductant for inorganic mercury while total mercury was determined after reduction with a mixture of SnCl2 and CdCl2. The difference between total mercury and inorganic mercury determines the content of organic mercury. The procedure of the present work differs of Magos in that the mercury vapour is carried to the absorption cell after magnetic stirring of the solution in the reaction flask; in the Magos procedure, mercury vapour is carried by bubbling the gas in to the solution. In contrast to the Magos procedure this slight modification overcame the necessity of at calibration by analyte addition, saving time and gainning accuracy.
Resumo:
The series of compounds cis-[Fe(CO)4(HgX)2], X=Cl,Br,I shows an octahedral geometry around the iron atom with the two HgX groups cis to each other. In this paper the assignment for the carbonyl stretching modes and the calculation of their force constants were performed on the basis of the Cotton-Krainhanzel model. Taking into account all the data from the IR, 199Hg NMR and UV-vis spectra it is possible to verify the influence of X on the electronic densities at the metallic centers.