75 resultados para menu labeling
Resumo:
Abstract:Lawsonia intracellularis infection on a horse farm in the Midwest region of Brazil is described. Thirty-nine foals a few days to months old from a herd with 300 horses, experienced diarrhea with variable characteristics and intensities, weight loss, hyperemic mucous membranes and dehydration. In foals 3 to 6 months of age, hypoproteinemia associated with submandibular edema were also common. Intestinal fragments of a 7-month-old foal were sent to an animal disease laboratory for diagnosis. The observed macroscopic lesions were hyperemic serosa, thickening of the intestinal wall with a corrugation, thickening of the mucosa folds and reduction of intestinal lumen. Histological analysis of the small and large intestine revealed enterocyte hyperplasia of the crypts associated with diffuse marked decrease in the number of goblet cells and positive L. intracellularis antigen labeling by immunohistochemistry. Three out of 11 animals of the same property were seropositive for L. intracellularis, demonstrating the circulation of the agent throughout the farm, but none were PCR positive in fecal samples. Based on clinical signs and pathological findings, the diagnosis of equine proliferative enteropathy was confirmed.
Resumo:
Specific glycosphingolipid antigens of Leishmania (L.) amazonensis amastigotes reactive with the monoclonal antibodies (MoAbs) ST-3, ST-4 and ST-5 were isolated, and their structure was partially elucidated by negative ion fast atom bombardment mass spectrometry. The glycan moieties of five antigens presented linear sequences of hexoses and N-acetylhexosamines ranging from four to six sugar residues, and the ceramide moieties were found to be composed by a sphingosine d18:1 and fatty acids 24:1 or 16:0. Affinities of the three monoclonal antibodies to amastigote glycosphingolipid antigens were also analyzed by ELISA. MoAb ST-3 reacted equally well with all glycosphingolipid antigens tested, whereas ST-4 and ST-5 presented higher affinities to glycosphingolipids with longer carbohydrate chains, with five or more sugar units (slow migrating bands on HPTLC). Macrophages isolated from footpad lesions of BALB/c mice infected with Leishmania (L.) amazonensis were incubated with MoAb ST-3 and, by indirect immunofluorescence, labeling was only detected on the parasite, whereas no fluorescence was observed on the surface of the infected macrophages, indicating that these glycosphingolipid antigens are not acquired from the host cell but synthesized by the amastigote. Intravenous administration of 125I-labeled ST-3 antibody to infected BALB/c mice showed that MoAb ST-3 accumulated significantly in the footpad lesions in comparison to blood and other tissues
Resumo:
To assess relationships between neuropeptide-binding sites and receptor proteins in rat brain, the distribution of radioautographically labeled somatostatin and neurotensin-binding sites was compared to that of immunolabeled sst2A and NTRH receptor subtypes, respectively. By light microscopy, immunoreactive sst2A receptors were either confined to neuronal perikarya and dendrites or diffusely distributed in tissue. By electron microscopy, areas expressing somatodendritic sst2A receptors displayed only low proportions of membrane-associated, as compared to intracellular, receptors. Conversely, regions displaying diffuse sst2A labeling exhibited higher proportions of membrane-associated than intracellular receptors. Furthermore, the former showed only low levels of radioautographically labeled somatostatin-binding sites whereas the latter contained high densities of somatostatin-binding suggesting that membrane-associated receptors are preferentially recognized by the radioligand. In the case of NTRH receptors, there was a close correspondence between the light microscopic distribution of NTRH immunoreactivity and that of labeled neurotensin-binding sites. Within the substantia nigra, the bulk of immuno- and autoradiographically labeled receptors were associated with the cell bodies and dendrites of presumptive DA neurons. By electron microscopy, both markers were detected inside as well as on the surface of labeled neurons. At the level of the plasma membrane, their distribution was highly correlated and characterized by a lack of enrichment at the level of synaptic junctions and by a homogeneous distribution along the remaining neuronal surface, in conformity with the hypothesis of an extra-synaptic action of this neuropeptide. Inside labeled dendrites, there was a proportionally higher content of immunoreactive than radiolabeled receptors. Some of the immunolabeled receptors not recognized by the radioligand were found in endosome-like organelles suggesting that, as in the case of sst2A receptors, they may have undergone endocytosis subsequent to binding to the endogenous peptide
Resumo:
Cell proliferation and migration in the intestinal crypts, and cell migration in the villus are controlled by different mechanisms in adult rats. In the present study, weanling rats and fasting rats were used to quantitatively study the correlation of cell cycle parameters and epithelial cell migration in crypts and intestinal villi. Eighteen-day-old rats received a single injection of tritiated thymidine [3H]TdR (23:00 h); half of the pups were submitted to fasting 5 h earlier. Cell proliferation was determined in radioautographs of jejunal crypts, on the basis of the labeling indices (LI) taken 1, 8, 13 and 19 h after [3H]TdR. The results showed that the labeling index did not differ 1 h or 19 h after [3H]TdR between the fed (38.7% or 48%) and fasting groups (34.6% or 50.4%). The modified method of grain count halving indicated that cell cycle time did not differ between fed (16.5 h) and fasting rats (17.8 h); the growth fraction, however, had lower values in fasting (59%) than in fed rats (77%). Cell migration in the crypt, estimated by the LI obtained for each cell position, did not change with treatment. As for the villi, the cell migration rate was significantly retarded by 3 cell positions (8%). These results suggest that the cell migration in the villi of weanling pups does not depend directly on the cell proliferation and migration in the intestinal crypt, but is directly affected by the absence of food in the lumen
Resumo:
It is generally accepted that mitochondria are able to proliferate even in postmitotic cells due to their natural turnover and also to satisfy increased cell energy requirements. However, no detailed studies are available, particularly with respect to specific cell types. Since [3H]-thymidine is incorporated not only into nuclear (n) DNA but also into the DNA of cytoplasmic mitochondria, an autoradiographic approach was developed at the light microscopy level in order to study basic questions of mitochondrial (mt) proliferation in organs of rodents in situ via the cytoplasmic incorporation of [3H]-thymidine injected into the animals 1 h before sacrifice. Experiments carried out on mice after X-irradiation showed that cytoplasmic labeling was not due to a process such as unscheduled nuclear DNA synthesis (nUDS). Furthermore, half-lives of mitochondria between 8-23 days were deduced specifically in relation to cell types. The phase of mtDNA synthesis was about 75 min. Finally, mt proliferation was measured in brain cells of mice as a function of age. While all neurons showed a decreasing extent of mtDNA synthesis during old age, nUDS decreased only in distinct cell types of the cortex and hippocampus. We conclude that the leading theories explaining the phenomenon of aging are closely related, i.e., aging is due to a decreasing capacity of nDNA repair, which leads to unrepaired nDNA damage, or to an accumulation of mitochondria with damaged mtDNA, which leads to a deficit of cellular energy production
Resumo:
Bothrops erythromelas is responsible for many snake bites in northeastern Brazil. In the present study we determined the in vivo distribution of the venom following its subcutaneous injection into mice. B. erythromelas venom and albumin were labeled individually with 131I by the chloramine T method, and separated in a Sephacryl® S-200 column. The efficiency of labeling was 68%. Male Swiss mice (40-45 g), which had been provided with drinking water containing 0.05% KI over a period of 10 days prior to the experiment, were inoculated dorsally (sc) with 0.3 ml (2.35 x 105 cpm/mouse) of 131I-venom (N = 42), 131I-albumin or 131I (controls, N = 28 each). Thirty minutes and 1, 3, 6, 12, 18 and 24 h after inoculation, the animals were perfused with 0.85% NaCl and skin and various organs were collected in order to determine radioactivity content. There was a high rate of venom absorption in the skin (51%) within the first 30 min compared to albumin (20.1%) and free iodine (8.2%). Up to the third hour after injection there was a tendency for venom and albumin to concentrate in the stomach (3rd h), small intestine (3rd h) and large intestine (6th h). Both control groups had more radioactivity in the digestive tract, especially in the stomach, but these levels decreased essentially to baseline by 12-18 h postinjection. In the kidneys, the distribution profiles of venom, albumin and iodine were similar. Counts at 30 min postinjection were low in all three groups (1.37, 1.86 and 0.77, respectively), and diminished to essentially 0% by 12-18 h. Albumin tended to concentrate in muscle until the 3rd h postinjection (1.98%). There was a low binding of labeled venom in the liver (<0.54%), thyroid (<0.11%) and lungs (<0.08%), and no iodinated venom was detected in brain, heart, diaphragm, spleen or bladder. The low venom binding observed in most internal organs, comparable to that of albumin, suggests that B. erythromelas venom does not specifically target most internal organs. That is, the systemic effects of envenomation are mainly due to an indirect action
Resumo:
Food deprivation has been found to stimulate cell proliferation in the gastric mucosa of suckling rats, whereas the weanling period has been reported to be unresponsive in terms of proliferative activity. In the present study we analyze regional differences in the effect of milk or food deprivation on cell proliferation of the epithelia of the esophagus and of five segments of small intestine in suckling, weanling and newly weaned Wistar rats of both sexes. DNA synthesis was determined using tritiated thymidine to obtain labeling indices (LI); crypt depth and villus height were also determined. Milk deprivation decreased LI by 50% in the esophagus (from 15 to 8.35%) and small intestine (from 40 to 20%) of 14-day-old rats. In 18-day-old rats, milk and food deprivation decreased LI in the esophagus (from 13 to 5%) and in the distal segments of the small intestine (from 36-40 to 24-32%). In contrast, the LI of the epithelia of the esophagus (5%) and of all small intestine segments (around 30%) of 22-day-old rats were not modified by food deprivation. Crypt depth did not change after treatment (80 to 120 µm in 14- and 22-day-old rats, respectively). Villus height decreased in some small intestine segments of unfed 14- (from 400 to 300 µm) and 18-day-old rats (from 480 to 360 µm). The results show that, contrary to the stomach response, milk deprivation inhibited cell proliferation in the esophagus and small intestine of suckling rats, demonstrating the regional variability of each segment of the gastrointestinal tract in suckling rats. In newly weaned rats, food deprivation did not alter the proliferation of these epithelia, similarly to the stomach, indicating that weanling is a period marked by the insensitivity of gastrointestinal epithelia to dietary alterations
Resumo:
In this communication we review the results obtained with the confocal laser scanning microscope to characterize the interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi and tachyzoites of Toxoplasma gondii with host cells. Early events of the interaction process were studied by the simultaneous localization of sites of protein phosphorylation, revealed by immunocytochemistry, and sites of actin assembly, revealed by the use of labeled phaloidin. The results obtained show that proteins localized in the interaction sites are phosphorylated. The process of formation of the parasitophorous vacuole was monitored by labeling the host cell surface with fluorescent probes for lipids (PKH26), proteins (DTAF) and sialic acid (FITC-thiosemicarbazide) before interaction with the parasites. Evidence was obtained indicating transfer of components of the host cell surface to the parasite surface in the beginning of the interaction process. We also analyzed the distribution of cytoskeletal structures (microtubules and microfilaments visualized with specific antibodies), mitochondria (visualized with rhodamine 123), the Golgi complex (visualized with C6-NBD-ceramide) and the endoplasmic reticulum (visualized with anti-reticulin antibodies and DIOC6) during the evolution of intracellular parasitism. The results obtained show that some, but not all, structures change their position during evolution of the intracellular parasitism.
Resumo:
In this study we characterize the presence of muscarinic acetylcholine receptors (mAChR) in the isthmo-optic nucleus (ION) of chicks by immunohistochemistry with the M35 antibody. Some M35-immunoreactive fibers were observed emerging from the retinal optic nerve insertion, suggesting that they could be centrifugal fibers. Indeed, intraocular injections of cholera toxin B (CTb), a retrograde tracer, and double-labeling with M35 and CTb in the ION confirmed this hypothesis. The presence of M35-immunoreactive cells and the possible mAChR expression in ION and ectopic neuron cells in the chick brain strongly suggest the existence of such a cholinergic system in this nucleus and that acetylcholine release from amacrine cells may mediate interactions between retinal cells and ION terminals.
Resumo:
The presence of chitin in midgut structures of Callosobruchus maculatus larvae was shown by chemical and immunocytochemical methods. Detection by Western blotting of cowpea (Vigna unguiculata) seed vicilins (7S storage proteins) bound to these structures suggested that C. maculatus-susceptible vicilins presented less staining when compared to C. maculatus-resistant vicilins. Storage proteins present in the microvilli in the larval midgut of the bruchid were recognized by immunolabeling of vicilins in the appropriate sections with immunogold conjugates. These labeling sites coincided with the sites labeled by an anti-chitin antibody. These results, taken together with those previously published showing that the lower rates of hydrolysis of variant vicilins from C. maculatus-resistant seeds by the insect's midgut proteinases and those showing that vicilins bind to chitin matrices, may explain the detrimental effects of variant vicilins on the development of C. maculatus larvae.
Resumo:
Astroglial cells derived from lateral and medial midbrain sectors differ in their abilities to support neuritic growth of midbrain neurons in cocultures. These different properties of the two types of cells may be related to the composition of their extracellular matrix. We have studied the synthesis and secretion of sulfated glycosaminoglycans (GAGs) by the two cell types under control conditions and ß-D-xyloside-stimulated conditions, that stimulate the ability to synthesize and release GAGs. We have confirmed that both cell types synthesize and secrete heparan sulfate and chondroitin sulfate. Only slight differences were observed between the proportions of the two GAGs produced by the two types of cells after a 24-h labeling period. However, a marked difference was observed between the GAGs produced by the astroglial cells derived from lateral and medial midbrain sectors. The medial cells, which contain derivatives of the tectal and tegmental midline radial glia, synthesized and secreted ~2.3 times more chondroitin sulfate than lateral cells. The synthesis of heparan sulfate was only slightly modified by the addition of ß-D-xyloside. Overall, these results indicate that astroglial cells derived from the two midbrain sectors have marked differences in their capacity to synthesize chondroitin sulfate. Under in vivo conditions or a long period of in vitro culture, they may produce extracellular matrix at concentrations which may differentially affect neuritic growth.
Resumo:
Corneal transparency is attributed to the regular spacing and diameter of collagen fibrils, and proteoglycans may play a role in fibrillogenesis and matrix assembly. Corneal scar tissue is opaque and this opacity is explained by decreased ultrastructural order that may be related to proteoglycan composition. Thus, the objectives of the present study were to characterize the proteoglycans synthesized by human corneal explants and to investigate the effect of mechanical epithelial debridement. Human corneas unsuitable for transplants were immersed in F-12 culture medium and maintained under tissue culture conditions. The proteoglycans synthesized in 24 h were labeled metabolically by the addition of 35S-sulfate to the medium. These compounds were extracted by 4 M GuHCl and identified by a combination of agarose gel electrophoresis, enzymatic degradation with protease and mucopolysaccharidases, and immunoblotting. Decorin was identified as the main dermatan sulfate proteoglycan and keratan sulfate proteoglycans were also prominent components. When the glycosaminoglycan side chains were analyzed, only keratan sulfate and dermatan sulfate were detected (~50% each). Nevertheless, when these compounds were 35S-labeled metabolically, the label in dermatan sulfate was greater than in keratan sulfate, suggesting a lower synthesis rate for keratan sulfate. 35S-Heparan sulfate also appeared. The removal of the epithelial layer caused a decrease in heparan sulfate labeling and induced the synthesis of dermatan sulfate by the stroma. The increased deposit of dermatan sulfate proteoglycans in the stroma suggests a functional relationship between epithelium and stroma that could be related to the corneal opacity that may appear after epithelial cell debridement.
Resumo:
The rate of axonal regeneration, after sciatic nerve lesion in adult C57BL/6J mice, is reduced when compared to other isogenic strains. It was observed that such low regeneration was not due just to a delay, since neuronal death was observed. Two general mechanisms of cell death, apoptosis and necrosis, may be involved. By using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique, we demonstrated that a large number of sensory neurons, as well as satellite cells found in the dorsal root ganglia, were intensely labeled, thus indicating that apoptotic mechanisms were involved in the death process. Although almost no labeled neurons or satellite cells were observed one week after transection, a more than ten-fold increase in TUNEL labeling was detected after two weeks. The results obtained with the C57BL/6J strain were compared with those of the A/J strain, which has a much higher peripheral nerve regeneration potential. In A/J mice, almost no labeling of sensory neurons or satellite cells was observed after one or two weeks, indicating the absence of neuronal loss. Our data confirm previous observations that approximately 40% of C57BL/6J sensory neurons die after sciatic nerve transection, and indicate that apoptotic events are involved. Also, our observations reinforce the hypothesis that the low rate of axonal regeneration occurring in C57BL/6J mice may be the result of a mismatch in the timing of the neurons need for neurotrophic substances, and production of the latter by non-neuronal cells in the distal stump.
Resumo:
Despite extensive genetic and immunological research, the complex etiology and pathogenesis of type I diabetes remains unresolved. During the last few years, our attention has been focused on factors such as abnormalities of islet function and/or microenvironment, that could interact with immune partners in the spontaneous model of the disease, the non-obese diabetic (NOD) mouse. Intriguingly, the first anomalies that we noted in NOD mice, compared to control strains, are already present at birth and consist of 1) higher numbers of paradoxically hyperactive ß cells, assessed by in situ preproinsulin II expression; 2) high percentages of immature islets, representing islet neogenesis related to neonatal ß-cell hyperactivity and suggestive of in utero ß-cell stimulation; 3) elevated levels of some types of antigen-presenting cells and FasL+ cells, and 4) abnormalities of extracellular matrix (ECM) protein expression. However, the colocalization in all control mouse strains studied of fibroblast-like cells (anti-TR-7 labeling), some ECM proteins (particularly, fibronectin and collagen I), antigen-presenting cells and a few FasL+ cells at the periphery of islets undergoing neogenesis suggests that remodeling phenomena that normally take place during postnatal pancreas development could be disturbed in NOD mice. These data show that from birth onwards there is an intricate relationship between endocrine and immune events in the NOD mouse. They also suggest that tissue-specific autoimmune reactions could arise from developmental phenomena taking place during fetal life in which ECM-immune cell interaction(s) may play a key role.
Resumo:
Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.