63 resultados para membrane solubilization
Resumo:
The objective of this work was to evaluate the ability of several P-solubilizing fungi to solubilize aluminum phosphate and Araxá apatite as well as the synergism between the P-solubilizing fungus, PSF 7, and arbuscular mycorrhizal fungi to promote clover growth amended with aluminum phosphate. Two experiments were carried out, the first under laboratory conditions and the second in a controlled environmental chamber. In the first experiment, PSF 7, PSF 9, PSF 21 and PSF 22 isolates plus control were incubated in liquid medium at 28ºC for eight days. On the 2nd, 4th and 8th day of incubation, pH and soluble P were determined. In the second experiment, clover was sowed in plastic pots containing 300 g of sterilized substrate amended with aluminum phosphate, 3 g L-1, in presence and absence of PSF 7 isolate and arbuscular mycorrhizal fungi. A completely randomized design, in factorial outline 2x2 (presence and absence of PSF 7 and arbuscular mycorrhizal fungi) and five replicates were used. In the first experiment, higher P content was detected in the medium containing aluminum phosphate. PSF 7 is the best fungi isolate which increases aluminum solubilization with major tolerance to Al3+. Clover growth was stimulated by presence of PSF 7 and arbuscular mycorrhizal fungi. There is synergism between microorganisms utilized to improve plant nutrition.
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
A furan-triazole derivative has been explored as an ionophore for preparation of a highly selective Pr(III) membrane sensor. The proposed sensor exhibits a Nernstian response for Pr(III) activity over a wide concentration range with a detection limit of 5.2×10-8 M. Its response is independent of pH of the solution in the range 3.0-8.8 and offers the advantages of fast response time. To investigate the analytical applicability of the sensor, it was applied successfully as an indicator electrode in potentiometric titration of Pr(III) solution and also in the direct and indirect determination of trace Pr(III) ions in some samples.
Resumo:
This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U) using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
ABSTRACT Total Ammoniacal Nitrogen - TAN (NH3 + NH4+) in wastewaters cause environmental degradation concerns due to their negative impacts on air, soil and water. Several technologies are available for TAN removal from the wastewaters. One emerging technology is the use of hydrophobic membrane as non-destructive NH3 extraction. In this paper the authors discuss the uses of gas permeable membrane (GPM) and its physicochemical characteristics that influence gas mass transfer rate, diffusion and recovery mechanisms of NH3 from liquid sources (e.g. animal wastewater). Several aspects of NH3 extraction from liquid manure and other TAN generation sources using GPM technology as well as its applicability for NH3 mitigation from liquid effluents and possible recovery as a nutrient for plant growth are also discussed in this review.
Resumo:
OBJECTIVE: to evaluate the efficacy of the amniotic membrane used with polypropylene mesh against the formation of adhesions and its influence on healing. METHODS: twenty five female Wistar rats were anesthetized for creating a parietal defect in the anterior abdominal wall. Its correction was made with polypropylene mesh alone and associated with amniotic membrane. In the control group (n=11), the screen was inserted alone. In group A (n=7) we interposed the amniotic membrane between the screen and the abdominal wall. In group B, the amniotic membrane was placed on the mesh, covering it. After seven days, the animals were euthanized for macroscopic and microscopic evaluation of healing. RESULTS: adhesions were observed in all animals except one in the control group. Severe inflammation was observed in all animals in groups A and B and in three of the control group, with significant difference between them (A and B with p=0.01). Pronounced angiogenic activity was noted in one animal in the control group, six in group A and four in group B, with a significant difference between the control group and group A (p=0.002) and group B (p=0.05). The scar collagen was predominantly mature, except in five animals of the control group, with significant difference between the control group and group A (p=0.05) and group B (p=0.05). CONCLUSION: The amniotic membrane did not alter the formation of adhesions in the first postoperative week. There were also pronounced inflammation, high angiogenic activity and predominance of mature collagen fibers, regardless of the anatomical plane that it was inserted in.
Resumo:
The objective of the study was to evaluate the topical effects of 0.2% Cyclosporine A (CsA) on corneal neovascularization of rats following surgical implantation of equine amniotic membrane into a corneal stroma micropocket. The implantation of xenologous amniotic membrane was performed bilaterally in 90 rats. In the same day of the surgery each right eye started receiving topical CsA twice a day. The left eye received no medication and served as a control. The evaluation of corneal neovascularization was performed by computerized image analysis and histopathological evaluation at 1, 3, 7, 15, 30 and 60 days postoperatively. For the image analysis 10 animals were used per time period, and for the histopathological examination, five animals were used per time period. Image analysis found that corneal neovascularization began on the 3rd postoperative day, reached its peak on the 7th day, and then progressively and rapidly decreased. Statistic analysis indicated that neovascularization of the CsA treated eye on the 7th day was significantly higher than that observed in untreated eyes. On the 30th day, however, this pattern was reversed with the neovascularization observed in the CsA treated eyes declining to the low levels observed on the 3rd day. The degree of neovascularization in the untreated eyes on the 30th day declined to the baseline levels found on day 3 at the 60th day. Histopathological analysis indicated that deposition of collagen in the implanted tissue was completed by the 15th day. Therefore, we concluded that (1) equine amniotic membrane in rat corneal stroma produced an intense neovascularization until the 15th day postoperatively and then regressed, (2) deposition of collagen of the implanted tissue was completed on the 15th day postoperatively, and (3) use of CsA was associated with increase in the corneal neovascularization initially, followed by a quick and intense regression.
Resumo:
The efficacy of three vaccines was evaluated in chickens for the control of experimental infection with Salmonella Enteritidis (SE) phage type 4. The vaccines were produced with bacterin, outer membrane proteins (OMP) and fimbriae crude extract (FE). The chickens were vaccinated intramuscularly with two doses of each vaccine at 12 and 15 weeks of age. The chickens were then orally challenged with 10(9) CFU/chicken Salmonella Enteritidis phage type 4 at 18 weeks of age. Fecal swabs were performed for the recovery of shedding SE, and SE was recovered from the liver and spleen. Additionally, antibody titers were measured in the serum by micro-agglutination test. The results indicated that the vaccine produced with bacterin yielded better results and resulted in reduction of fecal shedding and organ invasion by SE after oral challenge, although no vaccine was 100% effective for the control of SE experimental infection.
Resumo:
We present an ultrastructural study of the utilization of human amniotic membrane in the treatment of congenital absence of the vagina in 10 patients. All patients were surgically treated with application of an amniotic membrane graft using the modified McIndoe and Bannister technique. Sixty days after surgery, samples of the vaginal neo-epithelium were collected for transmission electron microscopy analysis. The ultrastructural findings consisted of a lining of mature squamous epithelium indicating the occurrence of metaplasia of the amniotic epithelium into the vaginal epithelium. The cells were arranged in layers as in the normal vaginal epithelium, i.e., superficial, intermediate and deep layers. There were desmosomes and cytoplasmic intermediate cytokeratin filaments, as well as some remnant features of the previous amniotic epithelium. These findings suggest that human amniotic membrane is able to complete metaplasia into squamous cells but the mechanism of this cellular transformation is unknown
Extracellular ATP in the lymphohematopoietic system: P2Z purinoceptors and membrane permeabilization
Resumo:
The effects of extracellular nucleosides and nucleotides on many organs and systems have been recognized for almost 50 years. The effects of extracellular ATP (ATPo), UTPo, ADPo, and other agonists are mediated by P2 purinoceptors. One of the most dramatic effects of ATPo is the permeabilization of plasma membranes to low molecular mass solutes of up to 900 Da. This effect is evident in several cells of the lymphohematopoietic system and is supposed to be mediated by P2Z, an ATP4--activated purinoceptor. Here, we review some basic information concerning P2 purinoceptors and focus our attention on P2Z-associated phenomena displayed by macrophages. Using fluorescent dye uptake, measurement of free intracellular Ca2+ concentration and electrophysiological recordings, we elucidate some of the events that follow the application of ATP to the extracellular surface of macrophages. We propose a regulatory mechanism for the P2Z-associated permeabilization pore. The presence of P2 purinoceptors in cells of the lymphohematopoietic system makes them potential candidates to mediate immunoregulatory events
Resumo:
Alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca2+-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can a-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for a-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.
Resumo:
Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.