38 resultados para light-regulated growth
Resumo:
To understand the growth and reproduction of the palm Geonoma schottiana in the gallery forest of Central Brazil, two hypotheses were raised: (i) production of leaves and reproductive structures are concentrated in the period of the year with high light availability; (ii) leaf production and reproductive activity are related to plant length. However, it is expected that senility effects will cause fast reduction in growth and reproduction activities in higher plants. Growth and reproduction were concentrated in the dry season, when insolation is higher than in the wet season, suggesting that leaf and inflorescence production on G. schottiana in the gallery forest understory is more limited by light than by soil humidity. As the individual grows, leaf number and blade area increase, but reproduction activity is independent of plant length. Resources stored in the stem are important to growth, but exogenous factors, as canopy openness, should be more important to reproduction. Plant senescence seems to have a lesser effect on the production of vegetative and reproductive structures in G. schottiana than has been detected in congeneric species with greater clonal activity.
Resumo:
(Note on the germination of Vochysia tucanorum seeds treated with growth regulators). The aim of this work was to evaluate the germination response of Vochysia tucanorum Mart. seeds treated with GA3 and CEPA and germinated under white light or darkness. Newly collected seeds from a Cerrado area were stored for 14 days at two temperatures (25 °C ± 2 and 7 °C ± 1). After the storage period the seeds were pre-treated with distilled water (control), gibberellic acid (GA3), 2-chloroethylphosphonic acid (CEPA) and a mixture of GA3 + CEPA. Following this, the seeds were sown in Petri dishes on filter paper moistened with distilled water and germinated in either darkness or white light. The results suggest that seeds are non-photoblastic and non-dormant, however a photoblastic behavior emerges when the seeds were previously stored at low temperature and imbibed in CEPA and GA3 solutions. In general, there is no difference between the 7 °C and 25 °C storage temperatures. The germination of seeds pre-treated with CEPA and CEPA + GA3 under white light was faster as compared to the distilled water control, and the effect of the CEPA + GA3 mixture was more pronounced than CEPA alone. Thus, the germination rate of V. tucanorum seeds can be improved by treatment with CEPA or CEPA + GA3 under white light.
Resumo:
Intermediate filament (IF) proteins constitute an extremely large multigene family of developmentally and tissue-regulated cytoskeleton proteins abundant in most vertebrate cell types. Astrocyte precursors of the CNS usually express vimentin as the major IF. Astrocyte maturation is followed by a switch between vimentin and glial fibrillary acidic protein (GFAP) expression, with the latter being recognized as an astrocyte maturation marker. Levels of GFAP are regulated under developmental and pathological conditions. Upregulation of GFAP expression is one of the main characteristics of the astrocytic reaction commonly observed after CNS lesion. In this way, studies on GFAP regulation have been shown to be useful to understand not only brain physiology but also neurological disease. Modulators of GFAP expression include several hormones such as thyroid hormone, glucocorticoids and several growth factors such as FGF, CNTF and TGFß, among others. Studies of the GFAP gene have already identified several putative growth factor binding domains in its promoter region. Data obtained from transgenic and knockout mice have provided new insights into IF protein functions. This review highlights the most recent studies on the regulation of IF function by growth factors and hormones.
Resumo:
Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS). The extracellular matrix (ECM) represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries) that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.
Resumo:
A close correlation between vitamin D receptor (VDR) abundance and cell proliferation rate has been shown in NIH-3T3 fibroblasts, MCF-7 breast cancer and in HL-60 myeloblastic cells. We have now determined if this association occurs in other leukemic cell lines, U937 and K562, and if VDR content is related to c-myc expression, which is also linked to cell growth state. Upon phorbol myristate acetate (PMA) treatment, cells from the three lineages (HL-60, U937 and K562) differentiated and expressed specific surface antigens. All cell lines analyzed were growth inhibited by PMA and the doubling time was increased, mainly due to an increased fraction of cells in the G0/G1 phase, as determined by flow cytometry measurements of incorporated bromodeoxyuridine and cell DNA content. C-myc mRNA expression was down-regulated and closely correlated to cell growth arrest. However, VDR expression in leukemic cell lines, as determined by immunofluorescence and Northern blot assays, was not consistently changed upon inhibition of cell proliferation since VDR levels were down-regulated only in HL-60 cells. Our data suggest that VDR expression cannot be explained simply as a reflection of the leukemic cell growth state.
Resumo:
Diallyl disulfide (DADS) inhibits growth and induces cell cycle G2/M arrest in human gastric cancer MGC803 cells. In this study, 15 mg/L DADS exerted similar effects on growth and cell cycle arrest in human gastric cancer BGC823 cells. Due to the importance of cell cycle redistribution in DADS-mediated anti-carcinogenic effects, we investigated the role of checkpoint kinases (Chk1 and Chk2) during DADS-induced cell cycle arrest. We hypothesized that DADS could mediate G2/M phase arrest through either Chk1 or Chk2 signal transduction pathways. We demonstrated that DADS induced the accumulation of phosphorylated Chk1, but not of Chk2, and that DADS down-regulated Cdc25C and cyclin B1. The expression of mRNA and total protein for Chkl and Chk2 was unchanged. Chk1 is specifically phosphorylated by ATR (ATM-RAD3-related gene). Western blot analysis showed that phospho-ATR was activated by DADS. Taken together, these data suggest that cell cycle G2/M arrest, which was associated with accumulation of the phosphorylated forms of Chk1, but not of Chk2, was involved in the growth inhibition induced by DADS in the human gastric cancer cell line BGC823. Furthermore, the DADS-induced G2/M checkpoint response is mediated by Chk1 signaling through ATR/Chk1/Cdc25C/cyclin B1, and is independent of Chk2.
Resumo:
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Resumo:
In this study, we investigated the potential role of high-mobility group box 1 (HMGB1) in severe acute pancreatitis (SAP) and the effects of growth hormone (G) and somatostatin (S) in SAP rats. The rats were randomly divided into 6 groups of 20 each: sham-operated, SAP, SAP+saline, SAP+G, SAP+S and SAP+G+S. Ileum and pancreas tissues of rats in each group were evaluated histologically. HMGB1 mRNA expression was measured by reverse transcription-PCR. Levels of circulating TNF-α, IL-1, IL-6, and endotoxin were also measured. In the SAP group, interstitial congestion and edema, inflammatory cell infiltration, and interstitial hemorrhage occurred in ileum and pancreas tissues. The levels of HMGB1, TNF-α, IL-1, IL-6 and endotoxin were significantly up-regulated in the SAP group compared with those in the sham-operated group, and the 7-day survival rate was 0%. In the SAP+G and SAP+S groups, the inflammatory response of the morphological structures was alleviated, the levels of HMGB1, TNF-α, IL-1, IL-6, and endotoxin were significantly decreased compared with those in the SAP group, and the survival rate was increased. Moreover, in the SAP+G+S group, all histological scores were significantly improved and the survival rate was significantly higher compared with the SAP group. In conclusion, HMGB1 might participate in pancreas and ileum injury in SAP. Growth hormone and somatostatin might play a therapeutic role in the inflammatory response of SAP.