43 resultados para laser ion source
Resumo:
Aiming to detail data obtained through brightfield microscopy (BM) on reproductive, excretory and digestive system, specimens of Schistosoma mansoni eight weeks old, were recovered from SW mice, stained with Langeron's carmine and analyzed under a confocal laser scanning microscope CLSM 410 (Carl Zeiss). The reproductive system presented a single and lobate testis, with intercommunications between the lobes without efferent duct. Supernumerary testicular lobe was amorphous and isolated from the normal ones. Collecting tubules (excretory ducts), followed by the excretory bladder, opening to the external media through the excretory pore, were observed at the posterior extremity of the body. In the digestive tract, a cecal swelling was noted at the junction that originates the single cecum. It was concluded that through confocal laser scanning microscopy, new interpretations of morphological structures of S. mansoni worms could be achieved, modifying adopted and current descriptions. The gonad consists of a single lobed testis, similar to that observed in some trematode species. Moreover, the same specimens can be observed either by BM or CLSM, considering that the latter causes only focal and limited damage in tissue structures.
Resumo:
Malnutrition hampers the course of schistosomiasis mansoni infection just as normal growth of adult worms. A comparative morphometric study on adult specimens (male and female) recovered from undernourished (fed with a low protein diet - regional basic diet) and nourished (rodent commercial laboratory food, NUVILAB) white mice was performed. Tomographic images and morphometric analysis of the oral and ventral suckers, reproductive system and tegument were obtained by means of confocal laser scanning microscopy. Undernourished male specimens presented smaller morphometric values (length and width) of the reproductive system (first, third and last testicular lobes) and thickness of the tegument than controls. Besides that, it was demonstrated that the dorsal surface of the male worms bears large tubercles unevenly distributed, but kept grouped and flat. At the subtegumental region, vacuolated areas were detected. It was concluded that the inadequate nutritional status of the vertebrate host has a negative influence mainly in the reproductive system and topographical somatic development of male adult Schistosoma mansoni, inducing some alterations on the structure of the parasite.
Resumo:
Aspects related to hatching, time-lapse between presenting the blood meal and beginning of feeding, feeding time, postfeed defecation delay,life time, mortality and fecundity for each stage of Meccus picturatus, life-cycle were evaluated and compared in two cohorts of M. picturatus fed on hens or rabbits. The hatching rate observed for each of the two studied groups of eggs was 78.1% (n = 2298) on the group fed on hens and 82.1% (n = 2704) on that fed on rabbits, and the average time of hatching was 20 days. Mean time-lapse for beginning feeding was under 3 min in nymphal stages and postfeed defecation delay was under 10 min in all stages, in both cohorts. Mean feeding time was significantly (P < 0.05) shorter in triatomines fed on hens than on rabbits. A similar number of nymphs of each cohort, 69 fed on hens (34.5%) and 68 fed on rabbits (34%), completed the cycle. No significantly (P > 0.05) differences were recorded among the average times from NI to adult in the cohort fed on hens (196.8 ± 15.8 days) and the average time in the cohort fed on rabbits (189.5 ± 22.9). The average span in days for each stage fed on hens was not significantly different to the average span for each stage fed on rabbits. The number of blood meals at each nymphal stage varied from 1 to 6 in both cohorts. The mortality rates were higher on fifth nymphal stage, in both cohorts. No significant (P > 0.05) differences were recorded on mortality rates on most nymphal stages of both cohorts. The average number of eggs laid per female from the cohort fed on hens in a 9-month period was 791.1, whereas the average number of eggs in the cohort fed on rabbits was 928.3.
Resumo:
Schistosoma mansoni adult worms with genital anomalies isolated from Nectomys squamipes (Muridae: Sigmodontinae) were studied by confocal laser scanning microscopy under the reflected mode. One male without testicular lobes (testicular agenesia/anorchism) and two females, one with an atrophied ovary and another with 17 uterine eggs, were identified. The absence of testicular lobes occurred in a worm presenting otherwise normal male adult characteristics: tegument, tubercles and a gynaecophoric canal with spines. In both female specimens the digestive tube showed a vacuolated appearance, and the specimen with supernumerary uterine eggs exhibited a developing miracidium and an egg with a formed shell. The area of the ventral sucker was similar in both specimens however the tegument thickness, ovary and vitelline glands of the specimen with the atrophied ovary were smaller than those of the one with supernumerary eggs. These reported anomalies in the reproductive system call attention to the need to improve our understanding of genetic regulation and the possible role of environmental influences upon trematode development.
Resumo:
A comparative morphometric study was performed to identify host-induced morphological alterations in Schistosoma mansoni adult worms. A wild parasite population was obtained from a naturally infected rodent (Nectomys squamipes)and then recovered from laboratory infected C3H/He mice. Furthermore, allopatric worm populations maintained for long-term under laboratory conditions in Swiss Webster mice were passed on to N. squamipes. Suckers and genital system (testicular lobes, uterine egg, and egg spine) were analyzed by a digital system for image analysis. Confocal laser scanning microscopy (CLSM) showed details of the genital system (testicular lobes, vitelline glands, and ovary) and the tegument just below the ventral sucker. Significant morphological changes (p < 0.05) were detected in male worms in all experimental conditions, with no significant variability as assessed by CLSM. Significant changes (p < 0.05) were evident in females from the wild population related to their ovaries and vitelline glands, whereas allopatric females presented differences only in this last character. We conclude that S. mansoni worms present the phenotypic plasticity induced by modifications in the parasite's microenvironment, mainly during the first passage under laboratory conditions.
Resumo:
The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.
Resumo:
Passive surveillance of infectious diseases with a high percentage of asymptomatic cases or long incubation periods, such as acquired immunodeficiency syndrome (AIDS), does not reflect the current transmission dynamics. Thus, a multi-strategic surveillance, such as the human immunodeficiency virus (HIV) sentinel surveillance proposed by the World Health Organization (WHO), is necessary. The Brazilian HIV sentinel surveillance was started in May 1992 with this purpose. The objectives of this study were to evaluate the feasibility and costs of HIV and hepatitis C virus (HCV) surveillance using dried blood spots (DBS) collected for neonatal screening of metabolic diseases in the state of Minas Gerais, Brazil. This was accomplished through the comparison of HIV and HCV seroprevalence with previous Brazilian studies. From December 2001 to June 2002, 24,905 newborns were tested for HIV and 4211 for HCV. HIV seroprevalence was 0.25% and the 95% confidence interval (CI) was 0.18, 0.31%; and HCV seroprevalence was 0.71% and the 95% CI was 0.46, 0.97%. These numbers are similar to previous Brazilian studies. Cost in this study was approximately US$ 3.10 per sample, which was roughly one third of the cost of the same exam at the Brazilian HIV sentinel surveillance. We conclude that it is possible and more cost-effective to use DBS for infectious diseases surveillance, albeit it is still necessary to compare these results with the usual sentinel methodology in a concomitant trial.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 µM), or by inhibiting the H+-pump with bafilomycin (4 µM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 µM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations.
Resumo:
Natural products have long been providing important drug leads for infectious diseases. Leishmaniasis is a protozoan parasitic disease found mainly in developing countries, and it has toxic therapies with few alternatives. Fungal infections have been the main cause of death in immunocompromised patients and new drugs are urgently needed. In this work, a total of 16 plant species belonging to 11 families, selected on an ethnopharmacological basis, were analyzed in vitro against Leishmania (L.) chagasi, Leishmania (L.) amazonensis, Candida krusei, and C. parapsilosis. Of these plant species, seven showed antifungal activity against C. krusei, five showed antileishmanial activity against L. chagasi and four against L. amazonensis, among them species of genus Plectranthus. Our findings confirm the traditional therapeutic use of these plants in the treatment of infectious and inflammatory disorders and also offer insights into the isolation of active and novel drug prototypes, especially those used against neglected diseases as Leishmaniasis.
Resumo:
Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.
Resumo:
Leishmania spp are distributed throughout the world and different species are associated with varying degrees of disease severity. However, leishmaniasis is thought to be confined to areas of the world where its insect vectors, sandflies, are present. Phlebotomine sandflies obtain blood meals from a variety of wild and domestic animals and sometimes from humans. These vectors transmit Leishmania spp, the aetiological agent of leishmaniasis. Identification of sandfly blood meals has generally been performed using serological methods, although a few studies have used molecular procedures in artificially fed insects. In this study, cytochrome b gene (cytB) polymerase chain reaction (PCR) was performed in DNA samples isolated from 38 engorged Psychodopygus lloydi and the expected 359 bp fragment was identified from all of the samples. The amplified product was digested using restriction enzymes and analysed for restriction fragment length polymorphisms (RFLPs). We identified food sources for 23 females; 34.8% yielded a primate-specific banding profile and 26.1% and 39.1% showed banding patterns specific to birds or mixed restriction profiles (rodent/marsupial, human/bird, rodent/marsupial/human), respectively. The food sources of 15 flies could not be identified. Two female P. lloydi were determined to be infected by Leishmania using internal transcribed spacer 1 and heat shock protein 70 kDa PCR-RFLP. The two female sandflies, both of which fed on rodents/marsupials, were further characterised as infected with Leishmania (Viannia) braziliensis. These results constitute an important step towards applying methodologies based on cytB amplification as a tool for identifying the food sources of female sandflies.
Resumo:
Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.