35 resultados para hydrogen pretreatment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt max) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myoclonus induced by etomidate during induction of general anesthesia is undesirable. This study evaluated the effect of dexmedetomidine (DEX) pretreatment on the incidence and severity of etomidate-induced myoclonus. Ninety patients undergoing elective surgical procedures were randomly allocated to three groups (n=30 each) for intravenous administration of 10 mL isotonic saline (group I), 0.5 µg/kg DEX in 10 mL isotonic saline (group II), or 1.0 µg/kg DEX in 10 mL isotonic saline (group III) over 10 min. All groups subsequently received 0.3 mg/kg etomidate by intravenous push injection. The incidence and severity of myoclonus were recorded for 1 min after etomidate administration and the incidence of cardiovascular adverse events that occurred between the administration of the DEX infusion and 1 min after tracheal intubation was recorded. The incidence of myoclonus was significantly reduced in groups II and III (30.0 and 36.7%), compared with group I (63.3%). The incidence of severe sinus bradycardia was significantly increased in group III compared with group I (P<0.05), but there was no significant difference in heart rate in groups I and II. There were no significant differences in the incidence of low blood pressure among the 3 groups. Pretreatment with 0.5 and 1.0 µg/kg DEX significantly reduced the incidence of etomidate-induced myoclonus during anesthetic induction; however, 0.5 µg/kg DEX is recommended because it had fewer side effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cookies were prepared with the replacement of 20% of wheat flour by chemically (alkaline hydrogen peroxide) and physically (extrusion) treated oat hulls, with the objective to investigate the possibility of use of this modified material. Cookies elaborated with the untreated hulls were used as control. Cookies were evaluated for their physical (spread ratio, specific volume and color) and sensory characteristics, and no difference was detected (p<0.05) among the cookies in relation to the physical properties. Triangule test, used to verify difference (p<0.05) among treated and untreated cookies, confirmed the efficiency of the treatment in sensory level. The acceptance level of cookies with treated fiber was evaluated by potential consumers of the product, obtaining 91% acceptance. The cookies presented 10.6 g of dietary fiber per 100 g of product.