46 resultados para histone deacetylase inhibitor
Resumo:
Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.
Resumo:
It has been demonstrated that nitric oxide (NO) has a thermoregulatory action, but very little is known about the mechanisms involved. In the present study we determined the effect of neuronal nitric oxide synthase (nNOS) inhibition on thermoregulation. We used 7-nitroindazole (7-NI, 1, 10 and 30 mg/kg body weight), a selective nNOS inhibitor, injected intraperitoneally into normothermic Wistar rats (200-250 g) and rats with fever induced by lipopolysaccharide (LPS) (100 µg/kg body weight) administration. It has been demonstrated that the effects of 30 mg/kg of 7-NI given intraperitoneally may inhibit 60% of nNOS activity in rats. In all experiments the colonic temperature of awake unrestrained rats was measured over a period of 5 h at 15-min intervals after intraperitoneal injection of 7-NI. We observed that the injection of 30 mg/kg of 7-NI induced a 1.5oC drop in body temperature, which was statistically significant 1 h after injection (P<0.02). The coinjection of LPS and 7-NI was followed by a significant (P<0.02) hypothermia about 0.5oC below baseline. These findings show that an nNOS isoform is required for thermoregulation and participates in the production of fever in rats.
Resumo:
Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days) treated from the 1st to the 19th postnatal day with citalopram (CIT), a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days). Aggressive behavior was induced by placing a pair of rats (matched by weight) in a box (20 x 20 x 20 cm), and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval). When compared to the control group (rats treated for the same period with equivalent volumes of saline solution), the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.
Resumo:
Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.
Resumo:
The pathogenesis of nonsteroidal anti-inflammatory drug (NSAID) enteropathy is a complex process involving the uncoupling of mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase (COX). Rofecoxib, a selective inhibitor of COX-2, has shown less gastric damage, but the same beneficial effect is not clear in the case of the small bowel. Fifty-seven male Wistar rats (250-350 g) were divided into three groups (N = 19 each) to evaluate the effect of this NSAID on the rat intestine. The groups received 2.5 mg/kg rofecoxib, 7.5 mg/kg indomethacin or water with 5% DMSO (control) given as a single dose by gavage 24 h before the beginning of the experiment. A macroscopic score was used to quantify intestinal lesions and intestinal permeability was measured using [51Cr]-ethylenediaminetetraacetic acid ([51Cr]-EDTA). The extent of intestinal lesion, indicated by a macroscopic score, was significantly lower when rofecoxib was administered compared to indomethacin (rofecoxib = 0.0 vs indomethacin = 63.6 ± 25.9; P < 0.05) and did not differ from control. The intestinal permeability to [51Cr]-EDTA was significantly increased after indomethacin (control = 1.82 ± 0.4 vs indomethacin = 9.12 ± 0.8%; P < 0.0001), but not after rofecoxib, whose effect did not differ significantly from control (control = 1.82 ± 0.4 vs rofecoxib = 2.17 ± 0.4%; ns), but was significantly different from indomethacin (indomethacin = 9.12 ± 0.8 vs rofecoxib = 2.17 ± 0.4%; P < 0.001). In conclusion, the present data show that rofecoxib is safer than indomethacin in rats because it does not induce macroscopic intestinal damage or increased intestinal permeability.
Resumo:
The histone-like protein H1 (H-NS) is an abundant structural component of the bacterial nucleoid and influences many cellular processes including recombination, transcription and transposition. Mutations in the hns gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes. We have studied the role of H-NS on the regulation of hemolysin gene expression in Serratia marcescens. The Escherichia coli hns mutant carrying S. marcescens hemolysin genes on a plasmid constructed by ligation of the 3.2-kb HindIII-SacI fragment of pR02 into pBluescriptIIKS, showed a high level of expression of this hemolytic factor. To determine the osmoregulation of wild-type and hns defective mutants the cells were grown to mid-logarithmic phase in LB medium with 0.06 or 0.3 M NaCl containing ampicillin and kanamycin, whereas to analyze the effect of pH on hemolysin expression, the cells were grown to late-logarithmic phase in LB medium buffered with 0.1 M Tris-HCl, pH 4.5 to 8.0. To assay growth phase-related hemolysin production, bacterial cells were grown in LB medium supplemented with ampicillin and kanamycin. The expression of S. marcescens hemolysin genes in wild-type E. coli and in an hns-defective derivative at different pH and during different growth phases indicated that, in the absence of H-NS, the expression of hemolysin did not vary with pH changes or growth phases. Furthermore, the data suggest that H-NS may play an important role in the regulation of hemolysin expression in S. marcescens and its effect may be due to changes in DNA topology influencing transcription and thus the amount of hemolysin expression. Implications for the mechanism by which H-NS influences gene expression are discussed.
Resumo:
Chronic allograft nephropathy is among the major causes of graft loss even in low-risk kidney transplant recipients and correlates with acute nephrotoxic events during the first year post-transplant. Therefore, calcineurin inhibitor-free regimens may improve patient and graft survival among recipients of living-related kidney transplants. To confirm this hypothesis, we evaluated the efficacy and safety of two calcineurin inhibitor-free regimens in 92 low-risk recipients of one-haplotype living-related kidney transplants. Immunosuppression consisted of tacrolimus, azathioprine and prednisone (group I, GI, N = 38), 2 doses of daclizumab, mycophenolate mofetil (MMF), and prednisone (GII, N = 33) and 2 doses of daclizumab, MMF, sirolimus and prednisone (GIII, N = 21). At 12 months, treatment failure (biopsy-confirmed acute rejection, graft loss or death) was higher in GII compared to GIII and GI (54.5 vs 24.0 vs 13.1%, P < 0.01, respectively). In patients of black ethnicity the incidence of acute rejection was 25 vs 83.3 vs 20% (P = 0.055), respectively. Patient and graft survival was comparable. There were no differences in mean creatinine or calculated creatinine clearance at 12 months. Overall incidence of post-transplant diabetes mellitus (3.3%) and cytomegalovirus disease (4.3%) was similar in all groups. Further development of effective calcineurin inhibitor-free regimens should exclude patients of black ethnicity and may need full-induction therapy, perhaps with depleting agents, and concentration-controlled use of sirolimus and MMF.
Resumo:
Experimental data and few clinical non-randomized studies have shown that inhibition of the renin-angiotensin system by angiotensin-converting enzyme (ACE) associated or not with the use of mycophenolate mofetil (MMF) could delay or even halt the progression of chronic allograft nephropathy (CAN). In this retrospective historical study, we investigated whether ACE inhibition (ACEI) associated or not with the use of MMF has the same effect in humans as in experimental studies and what factors are associated with a clinical response. A total of 160 transplant patients with biopsy-proven CAN were enrolled. Eighty-one of them were on ACE therapy (G1) and 80 on ACEI_free therapy (G2). Patients were further stratified for the use of MMF. G1 patients showed a marked decrease in proteinuria and stabilized serum creatinine with time. Five-year graft survival after CAN diagnosis was more frequent in G1 (86.9 vs 67.7%; P < 0.05). In patients on ACEI-free therapy, the use of MMF was associated with better graft survival. The use of ACEI therapy protected 79% of the patients against graft loss (OR = 0.079, 95%CI = 0.015-0.426; P = 0.003). ACEI and MMF or the use of MMF alone after CAN diagnosis conferred protection against graft loss. This finding is well correlated with experimental studies in which ACEI and MMF interrupt the progression of chronic allograft dysfunction and injury. The use of ACEI alone or in combination with MMF significantly reduced proteinuria and stabilized serum creatinine, consequently improving renal allograft survival.
Resumo:
7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS). The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinson’s disease.
Resumo:
Hyperthermia is one of the most effective adjuvant treatments for various cancers with few side effects. However, the underlying molecular mechanisms still are not known. N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, has been shown to be involved in diverse cellular stresses including hypoxia, lipotoxicity, etc. In addition, Ndrg2 has been reported to be related to progression of gastric cancer. In the current study, our data showed that the apoptosis rate of MKN28 cells increased relatively rapidly to 13.4% by 24 h after treatment with hyperthermia (42°C for 1 h) compared to 5.1% in control cells (P < 0.05). Nevertheless, there was no obvious change in the expression level of total Ndrg2 during this process. Further investigation demonstrated that the relative phosphorylation levels of Ndrg2 at Ser332, Thr348 increased up to 3.2- and 1.9-fold (hyperthermia groupvs control group) at 3 h in MKN28 cells, respectively (P < 0.05). We also found that heat treatment significantly increased AKT phosphorylation. AKT inhibitor VIII (10 µM) decreased the phosphorylation level of Ndrg2 induced by hyperthermia. Accordingly, the apoptosis rate rose significantly in MKN28 cells (16.4%) treated with a combination of AKT inhibitor VIII and hyperthermia compared to that (6.8%) of cells treated with hyperthermia alone (P < 0.05). Taken together, these data demonstrated that Ndrg2 phosphorylation could be induced by hyperthermia in an AKT-dependent manner in gastric cancer cells. Furthermore, AKT inhibitor VIII suppressed Ndrg2 phosphorylation and rendered gastric cancer cells susceptible to apoptosis induced by hyperthermia.
Resumo:
Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis.
Resumo:
Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.
Resumo:
Membranous nephropathy (MN), characterized by the presence of diffuse thickening of the glomerular basement membrane and subepithelial in situimmune complex disposition, is the most common cause of idiopathic nephrotic syndrome in adults, with an incidence of 5-10 per million per year. A number of studies have confirmed the relevance of several experimental insights to the pathogenesis of human MN, but the specific biomarkers of MN have not been fully elucidated. As a result, our knowledge of the alterations in histone methylation in MN is unclear. We used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to analyze the variations in a methylated histone (H3K9me3) in peripheral blood mononuclear cells from 10 MN patients and 10 healthy subjects. There were 108 genes with significantly different expression in the MN patients compared with the normal controls. In MN patients, significantly increased activity was seen in 75 H3K9me3 genes, and decreased activity was seen in 33, compared with healthy subjects. Five positive genes, DiGeorge syndrome critical region gene 6 (DGCR6), sorting nexin 16 (SNX16), contactin 4 (CNTN4), baculoviral IAP repeat containing 3 (BIRC3), and baculoviral IAP repeat containing 2 (BIRC2), were selected and quantified. There were alterations of H3K9me3 in MN patients. These may be candidates to help explain pathogenesis in MN patients. Such novel findings show that H3K9me3 may be a potential biomarker or promising target for epigenetic-based MN therapies.
Resumo:
New generation antidepressant therapies, including serotonin-norepinephrine reuptake inhibitor (SNRIs), were introduced in the late 1980s; however, few comprehensive studies have compared the benefits and risks of various contemporary treatments for major depressive disorder (MDD) in young patients. A comprehensive literature search of PubMed, Cochrane, Embase, Web of Science, and PsycINFO databases was conducted from 1970 to January 2015. Only clinical trials that randomly assigned one SNRI or placebo to patients aged 7 to 18 years who met the diagnostic criteria for major depressive disorder were included. Treatment success, dropout rate, and suicidal ideation/attempt outcomes were measured. Primary efficacy was determined by pooling the risk ratios (RRs) of treatment response and remission. Acceptability was determined by pooling the RRs of dropouts for all reasons and for adverse effects as well as suicide-risk outcomes. Five trials with a total of 973 patients were included. SNRIs were not significantly more effective than placebo for treatment response but were for remission. The comparison of patients taking SNRIs that dropped out for all reasons and those taking placebo did not reach statistical significance. Significantly more patients taking SNRIs dropped out for adverse effects than those taking placebo. No significant difference was found in suicide-related risk outcomes. SNRI therapy does not display a superior efficacy and is not better tolerated compared to placebo in these young patients. However, duloxetine has a potential beneficial effect for depression in young populations, showing a need for further research.
Resumo:
Origanum vulgare L. essential oil has been known as an interesting source of antimicrobial compounds to be applied in food conservation. In this study, the effect of O. vulgare essential on the growth of A. flavus, A. parasiticus, A. fumigatus, A. terreus and A. ochraceus was assessed. The essential oil had a significant inhibitory effect on all assayed fungi. MIC was 0.6 µL.mL-1 for all fungi, while MFC was in the range of 1.25-2.5 µL.mL-1. The radial mycelial growth of A. flavus and A. parasiticus was strongly inhibited over 14 days at 0.6, 1.25 and 2.5 µL.mL-1 of oil in solid medium. The mycelial mass of all fungi was inhibited over 90% at 0.6 and 0.3 µL.mL-1 in liquid medium, while it was 100% at 1.25 µL.mL-1. The oil in a range of concentrations (0.6 to 2.5 µL.mL-1) was effective in inhibiting the viability and spores germination in a short time of exposure. The main morphological changes caused by the essential oil in A. parasiticus observed under light microscopy were absence of conidiation, leakage of cytoplasm, loss of pigmentation, and disrupted cell structure. These results demonstrated that O. vulgare essential oil produced a significant fungitoxic effect supporting its possible rational use as anti-mould compound in food conservation.