124 resultados para gaseous pollutants
Resumo:
In Brazil, very little experimental work on measurements of indoor air pollutant levels has been done. Nowadays, increasing attention is being given to indoor air quality and the health problems associated with buildings and the indoor work environment. The scope of this paper is to review the major pollutants found in indoor environments and their sources. Subsequently, exposure to indoor air pollutants and health effects are considered. The review concludes by briefly addressing assessment of indoor air quality in Brazil and research needs.
Resumo:
We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs)=a*n(AM1). Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.
Resumo:
This work discusses sample preparation processes for gas chromatography (GC) based on the technique of extraction through membrane permeation (MPE). The MPE technique may be easily coupled to GC via a relatively simple device, which is a module that holds the membrane and is directly connected to the GC column. The possibility of operational errors due to sample handling is substantially reduced in an MPE-GC system because the sample preparation and the chemical analysis are accomplished as a one-step process. The MPE technique is of relatively wide application as it can be used for aqueous samples, solid samples and gaseous samples. Depending on the type of sample the extraction is performed with the membrane in direct contact with the sample or in contact with its headspace. The MPE-GC technique is very useful in trace analysis, due to the time-dependent enrichment of the analyte. A typical application of MPE-GC is the analysis of VOCs present in water that may be accomplished with detection limits at the low ppb (mugL-1) level.
Resumo:
One of the major interests in soil analysis is the evaluation of its chemical, physical and biological parameters, which are indicators of soil quality (the most important is the organic matter). Besides there is a great interest in the study of humic substances and on the assessment of pollutants, such as pesticides and heavy metals, in soils. Chemometrics is a powerful tool to deal with these problems and can help soil researchers to extract much more information from their data. In spite of this, the presence of these kinds of strategies in the literature has obtained projection only recently. The utilization of chemometric methods in soil analysis is evaluated in this article. The applications will be divided in four parts (with emphasis in the first two): (i) descriptive and exploratory methods based on Principal Component Analysis (PCA); (ii) multivariate calibration methods (MLR, PCR and PLS); (iii) methods such as Evolving Factor Analysis and SIMPLISMA; and (iv) artificial intelligence methods, such as Artificial Neural Networks.
Resumo:
By using thermochemical data reported for a series of chelates of the type [Ln(thd)3], thd = 2, 2, 6, 6 tetramethyl- 3,5-heptanedione and Ln = La, Pr, Nd, Sm, Gd, Tb, Ho, Er, Tm and Yb, empirical correlations were found involving thermochemical parameters (e.g. dissociation enthalpy) and the thermodynamic temperatures of the beginning of thermal degradation of the chelates, t i. It is shown that t i values are of capital importance in the study of this all class of coordination compounds. Among others, the empirical equation is obtained: r3+ = (-0,013.Z + 1,36)/0,005, that relates the lanthanide cation radius (pm) with the atomic number of the element. The remarkable fact is that this equation is achieved by using thermogravimetric and calorimetric parameters. Is also shown that t i values are related with the P(M) function values, which are very close related with the energy difference, deltaE, between the lowest electronic energy level of the f n s²d¹ configuration and the lowest energy level of the f n+1s² configuration in the neutral gaseous atoms.
Contribuição ao estudo de uma metodologia alternativa para obtenção de dioxissulfeto de terras raras
Resumo:
In the last decade, many method has been developed to obtain oxysufides. However, theses materials were obtained by reaction involved gaseous toxics, CO, CS2, H2S and S. In the present work, the synthesis of lanthanum oxysufides actived by europium (III) through an alternative method has been made. This method involve the rare earth sulfate reduction under an atmosphere of argon contained 10% hydrogen using the thermogravimetric technique. The results showed the formation of the phase TR2O2S (TR = La and Eu) at temperatures which depend upon the heating rate, respectively 650 - 830ºC at 5ºC min-1 and 680 - 800ºC at 10ºC min-1. The oxysufides obtained are characterized by infrared spectroscopy. The method developed is more economic than the usual industrial methods and the environmental problems during the synthesis are also better controled.
Resumo:
The abatement of recalcitrant lignin macromolecules from effluents of pulp and paper industry was investigated by combined process. Flocculation and coagulation with aluminum sulfate and natural polyelectrolytes extracted from cactus Cereus peruvianus were used in the first step. After separation of solid residues by filtration, the photochemical methods using TiO2 as catalyst were employed for photocatalytic degradation of lignin compounds from solution. The abatement of lignin compounds after flocculation and coagulation was 46%, and after the overall process, the pollutants reduction observed were 66%. The remaining organic compounds may be removed by any biological treatment.
Resumo:
Coal ashes produced in coal-fired power plant could be converted into zeolites and can be used as low-cost adsorbents for the treatment of effluents contaminated with high levels of toxic metals. The capacity of synthetic zeolites for the removal of cadmium, zinc and copper ions from aqueous solutions has been investigated under different operating conditions. Zeolite from bottom chimney showed higher removal efficiency for metals ions than zeolite from feed hopper and mixing mill. The results indicated that the treated bottom ash could be applied in environmental technology as an immobilizer of pollutants.
Resumo:
A system for disposal and recovery of the main effluents and chemical waist from isotope separation plants and enriched compounds-15N and 34S production has been carried out at the Stable Isotope Laboratory (LIE) of the CENA/USP. Around four hundred thousand liters of effluents has been recovered yearly. Among the recovered chemical wastes, the more relevant are: ammonia; brome; ammonium and sodium sulfate; sodium hydroxide; sulfur dioxide; and hydrochloric acid. Chemical wastes containg recoverable heavy metals (Ag, Cr and Cu) and solvents (methanol, ethanol and acetone) are processed and recovered. Gaseous emissions, mainly H2S are used for recovery of heavy metals solutions. The minimization of the residues waters, as well the reduction of electric energy consume was established using a water deionization system. A cost/effect balance of the process is reported.
Resumo:
Electroflotation (EF) with aluminum electrodes was applied in the treatment of Brazilian industrial coconut wastewater. The results show that EF with polarity inversion is a very good treatment when compared to others. The removal of pollutants in the wastewater after EF with polarity inversion was 96.3% of oils and grease, 99% of color and 66% of total organic carbon. Also, metal concentrations, turbidity and total solids were reduced.
Resumo:
The exhaust emissions of vehicles greatly contribute to environmental pollution. Diesel engines are extremely fuel-efficient. However, the exhaust compounds emitted by diesel engines are both a health hazard and a nuisance to the public. This paper gives an overview of the emission control of particulates from diesel exhaust compounds. The worldwide emission standards are summarized. Possible devices for reducing diesel pollutants are discussed. It is clear that after-treatment devices are necessary. Catalytic converters that collect particulates from diesel exhaust and promote the catalytic burn-off are examined. Finally, recent trends in diesel particulate emission control by novel catalysts are presented.
Resumo:
The aim of this work is to discuss some selected applications of square wave voltammetry published in the last five years. The applications focused here cover several electroanalytical fields such as: determination of pesticides; molecules with biological activity; metals and other environmental pollutants. Special attention is given to the work developed in the Grupo de Materiais Eletroquímicos e Métodos Eletroanalíticos - IQSC - USP concerning the utilization of square wave voltammetry, with different kinds of electrodes, for the determination of pesticides in natural waters and active principles in pharmaceutical formulations. The new methodology is simple, fast and sensitive when compared with the traditional ones such as chromatography and spectrophotometry. The satisfactory results obtained provide alternative procedures for the quality control of drugs and the monitoring of pesticides in natural environments.
Resumo:
Polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofuranes (PCDF) and polychlorinated biphenyls (PCB) are types of persistent and bioaccumulating organic pollutants with enhanced chronic toxicity and carcinogenic properties and can be considered as environmental indicators of anthropogenic activities since their occurrence in the environment can always be linked to anthropogenic activities. The present paper reviews the main sources and behaviour of these compounds in the environment as well as the risks they represent to man and biota.
Resumo:
Anthropogenic pollution of groundwater and surface water has become a very serious environmental problem around the world. A wide range of toxic pollutants is recalcitrant to the conventional treatment methods, thus there is much interest in the development of more efficient remediation processes. Degradation of organic pollutants by zero-valent iron is one of the most promising approaches for water treatment, mainly because it is of low cost, easy to obtain and effective. After a general introduction to water pollution and current treatments, this work highlights the advances, applications and future trends of water remediation by zero-valent iron. Special attention is given to degradation of organochloride and nitroaromatic compounds, which are commonly found in textile and paper mill effluents.
Resumo:
Immunoassay techniques provide simple, powerful and inexpensive methods for analysis of environmental contaminants. However, the acceptance of immunoassays is dependent on the clear demonstration of quality and validity compared to more traditional techniques. In this review, primarily, the understanding and the fundamentals of immunoassay methods are given in order to make good use of immunoassays, especially of EIA tests. Special attention is given to the concepts related to the enzyme-linked immunosorbent assay (ELISA) formats, such as inhibition concentration at 50% (IC50), detection limit (LOD), cross-reactivity (CR %). It is also explained why some immunoassays are quantitative methods whereas others can only be used as screening methods. A list of main commercial kits for detection of priority pollutants is given in order to help analysts. Others formats, such as flow-injection immunoassay analysis (FIIA), immunoassay chromatography and immunosensors are also cited.