40 resultados para fungal physiology
Resumo:
Leaves of Alchornea triplinervia (Spreng.) Muell. Arg. were submerged in a stream in an Atlantic Rainforest in São Paulo state, Brazil, from July/1988 to June/1989 and from July/1989 to May/1990. Fungi were isolated by the leaf disks washing technique followed by plating on culture media and also by using baiting techniques (using substrates with chitin, keratin and cellulose), what resulted on 565 fungal registers corresponding to 81 taxa. The most common species found during this study of the fungal succession were Trichoderma viride Pers. ex S.F. Gray and Fusarium oxysporum Schlecht emend. Snyd. & Hans. (23 registers), Penicillium hirsutum Dierckx (21 registers), Fusarium solani (Mart.) Appel & Wollenw. emend. Snyd. & Hans. (17), followed by 14 registers of: Cylindrocladium scoparium Morgan, Triscelophorus monosporus Ingold and Polychytrium aggregatum Ajello. Although the monthly obtained mycota had been composed by species of different taxonomic groups, the fungal succession was defined by the initial presence of typical terrestrial leaf inhabiting fungi (mostly Deuteromycotina), followed by species of Mastigomycotina and Zygomycotina. Combining culture methods and baiting techniques, it was possible to verify the presence of terrestrial fungi on the decomposition of submerged leaves and the importance of zoosporic fungi in the fungal succession. This is the first paper about the fungal succession on the decomposition of leaves submerged in a lotic ecosystem in Brazil.
Resumo:
Leukocyte adhesion is of pivotal functional importance. The adhesion involves several different adhesion molecules, the most important of which are the leukocyte ß2-integrins (CD11/CD18), the intercellular adhesion molecules, and the selectins. We and others have extensively studied the specificity and binding sites in the integrins and the intercellular adhesion molecules for their receptors and ligands. The integrins have to become activated to exert their functions but the possible mechanisms of activation remain poorly understood. Importantly, a few novel intercellular adhesion molecules have been recently described, which seem to function only in specific tissues. Furthermore, it is becoming increasingly apparent that changes in integrins and intercellular adhesion molecules are associated with a number of acute and chronic diseases.
Resumo:
Physiological and pharmacological research undertaken on sloths during the past 30 years is comprehensively reviewed. This includes the numerous studies carried out upon the respiratory and cardiovascular systems, anesthesia, blood chemistry, neuromuscular responses, the brain and spinal cord, vision, sleeping and waking, water balance and kidney function and reproduction. Similarities and differences between the physiology of sloths and that of other mammals are discussed in detail.
Resumo:
Fungal infection is one of the most important causes of morbidity and mortality in bone marrow transplant (BMT) recipients. The growing incidence of these infections is related to several factors including prolonged granulocytopenia, use of broad-spectrum antibiotics, conditioning regimens, and use of immunosuppression to avoid graft-versus-host disease (GvHD). In the present series, we report five cases of invasive mold infections documented among 64 BMT recipients undergoing fluconazole antifungal prophylaxis: 1) A strain of Scedosporium prolificans was isolated from a skin lesion that developed on day +72 after BMT in a chronic myeloid leukemic patient. 2) Invasive pulmonary aspergillosis (Aspergillus fumigatus) was diagnosed on day +29 in a patient with a long period of hospitalization before being transplanted for severe aplastic anemia. 3) A tumoral lung lesion due to Rhizopus arrhizus (zygomycosis) was observed in a transplanted patient who presented severe chronic GvHD. 4) A tumoral lesion due to Aspergillus spp involving the 7th, 8th and 9th right ribs and local soft tissue was diagnosed in a BMT patient on day +110. 5) A patient with a history of Ph1-positive acute lymphocytic leukemia exhibited a cerebral lesion on day +477 after receiving a BMT during an episode of severe chronic GvHD. At that time, blood and spinal fluid cultures yielded Fusarium sp. Opportunistic infections due to fungi other than Candida spp are becoming a major problem among BMT patients receiving systemic antifungal prophylaxis with fluconazole.
Resumo:
Current immunological opinion disdains the necessity to define global interconnections between lymphocytes and regards natural autoantibodies and autoreactive T cells as intrinsically pathogenic. Immunological theories address the recognition of foreignness by independent clones of lymphocytes, not the relations among lymphocytes or between lymphocytes and the organism. However, although extremely variable in cellular/molecular composition, the immune system preserves as invariant a set of essential relations among its components and constantly enacts contacts with the organism of which it is a component. These invariant relations are reflected, for example, in the life-long stability of profiles of reactivity of immunoglobulins formed by normal organisms (natural antibodies). Oral contacts with dietary proteins and the intestinal microbiota also result in steady states that lack the progressive quality of secondary-type reactivity. Autoreactivity (natural autoantibody and autoreactive T cell formation) is also stable and lacks the progressive quality of clonal expansion. Specific immune responses, currently regarded as the fundament of the operation of the immune system, may actually result from transient interruptions in this stable connectivity among lymphocytes. More permanent deficits in interconnectivity result in oligoclonal expansions of T lymphocytes, as seen in Omenn's syndrome and in the experimental transplantation of a suboptimal diversity of syngeneic T cells to immunodeficient hosts, which also have pathogenic consequences. Contrary to theories that forbid autoreactivity as potentially pathogenic, the physiology of the immune system is conservative and autoreactive. Pathology derives from failures of these conservative mechanisms.
Resumo:
Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS). A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50). However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.
Resumo:
Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffolds for guiding bone tissue engineering has revealed unexpected manners in which the scaffold and cells interact with each other, so that a complex interplay of integration and disintegration of the scaffold ultimately results in efficient and desirable, although unpredictable, effects. Likewise, the manner in which biomaterial scaffolds are "resorbed" by osteoclasts in vitro and in vivo highlights more complex scenarios than predicted from knowledge of physiological bone resorption per se. Investigation of novel biomaterials for bone engineering represents an essential area for the design of tissue engineering strategies.
Resumo:
The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.
Resumo:
The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.
Resumo:
Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.