33 resultados para fluoride ion
Resumo:
A simple and rapid spectrophotometric method for the determination of nevirapine is described. The method is based on the reaction of nevirapine with tetrathiocyanatocobalt(II) ion in buffer of pH 4 to form the corresponding complex. Beer's law is obeyed in the range of 0.2 - 2.0 µg mL-1 for nevirapine. The optical parameters such as molar absorptivity, Sandell's sensitivity, detection limit and quantitation limit were found to be 1.16× 10(4) Lmol-1cm-1, 2.09 X 10-3 µg cm-2, 0.073 µg mL-1 and 0.222 µg mL-1 respectively. The optimum reaction conditions and other analytical parameters were evaluated. The statistical evaluation of the method was examined by determining intra-day and inter-day precision. The proposed method has been successfully applied for the determination of nevirapine in pharmaceutical formulations.
Resumo:
Nitrate is the main form of nitrogen associated with water contamination; the high mobility of this species in soil justifies the concern regarding nitrogen management in agricultural soils. Therefore, the objective of this research was to assess the effect of companion cation on nitrate displacement, by analyzing nitrate transport parameters through Breakthrough Curves (BTCs) and their settings made by numerical model (STANMOD). The experiment was carried out in the Soil and Water Quality Laboratory of the Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture in Piracicaba (SP), Brazil. It was performed using saturated soil columns in steady-state flow condition, in which two different sources of inorganic nitrate Ca(NO3)2 and NH4NO3 were applied at a concentration of 50 mg L-1 NO3-. Each column was filled with either a Red-Yellow Oxisol (S1) or an Alfisol (S2). Results are indicative that the companion ion had no effect on nitrate displacement. However, nitrate transport was influenced by soil texture, particle aggregation, solution speed in soil and organic matter presence. Nitrate mobility was higher in the Alfisol (S2).
Resumo:
Ischemic pain occurs when there is insufficient blood flow for the metabolic needs of an organ. The pain of a heart attack is the prototypical example. Multiple compounds released from ischemic muscle likely contribute to this pain by acting on sensory neurons that innervate muscle. One such compound is lactic acid. Here, we show that ASIC3 (acid-sensing ion channel #3) has the appropriate expression pattern and physical properties to be the detector of this lactic acid. In rats, it is expressed only in sensory neurons and then only on a minority (~40%) of these. Nevertheless, it is expressed at extremely high levels on virtually all dorsal root ganglion sensory neurons that innervate the heart. It is extraordinarily sensitive to protons (Hill slope 4, half-activating pH 6.7), allowing it to readily respond to the small changes in extracellular pH (from 7.4 to 7.0) that occur during muscle ischemia. Moreover, both extracellular lactate and extracellular ATP increase the sensitivity of ASIC3 to protons. This final property makes ASIC3 a "coincidence detector" of three molecules that appear during ischemia, thereby allowing it to better detect acidosis caused by ischemia than other forms of systemic acidosis such as hypercapnia.