62 resultados para exterior lighting network
Resumo:
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.
Resumo:
Objective: To build a theoretical model to configure the network social support experience of people involved in home care. Method: A quantitative approach research, utilizing the Grounded Theory method. The simultaneous data collection and analysis allowed the interpretation of the phenomenon meaning The network social support of people involved in home care. Results: The population passive posture in building their well-being was highlighted. The need of a shared responsibility between the involved parts, population and State is recognized. Conclusion: It is suggested for nurses to be stimulated to amplify home care to attend the demands of caregivers; and to elaborate new studies with different populations, to validate or complement the proposed theoretical model.
Resumo:
Cross-sectional study that used the Social Network Index and the genogram to assess the social network of 110 family caregivers of dependent patients attended by a Home Care Service in São Paulo, Brazil. Data were analyzed using the test U of Mann-Whitney, Kruskal-Wallis and Spearman correlation. Results were considered statistically significant when p<0,05. Few caregivers participated in activities outside the home and the average number of people they had a bond was 4,4 relatives and 3,6 friends. Caregivers who reported pain and those who had a partner had higher average number of relatives who to trust. The average number of friends was higher in the group that reported use of medication for depression. Total and per capita incomes correlated with the social network. It was found that family members are the primary caregiver’s social network.
Resumo:
Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
Abstract:The objective of this work was to evaluate the effect of limestone particle sizes in the diet and of lighting regimes on the egg and bone quality and on the performance of commercial laying hens. Three hundred Hissex White layers, at 18 weeks of age, were distributed in a completely randomized design, in a 5×2 factorial arrangement (coarse limestone in the diet at 0, 25, 50, 75, and 100%; with or without artificial light), with five replicates of six birds. No significant interaction was observed between particle sizes and lighting regime for the evaluated parameters. There was no significant effect of coarse limestone level in the diet on the performance and egg quality of hens; however, bone deformity (3.23 to 4.01 mm), strength (5.19 to 6.70 kgf cm-2), and mineral matter (51.09 to 59.61%) improved as the proportion of coarse limestone increased. For lighting regime, the treatment with artificial light yielded higher Haugh unit values (87.17 vs. 85.54) than that with natural light only. Greater limestone particles improve bone quality of laying hens, and the use of artificial light can benefit the albumen quality of the eggs.
Resumo:
ABSTRACT The present study aimed at evaluating the heterotic group formation in guava based on quantitative descriptors and using artificial neural network (ANN). For such, we evaluated eight quantitative descriptors. Large genetic variability was found for the eight quantitative traits in the 138 genotypes of guava. The artificial neural network technique determined that the optimal number of groups was three. The grouping consistency was determined by linear discriminant analysis, which obtained classification percentage of the groups, with a value of 86 %. It was concluded that the artificial neural network method is effective to detect genetic divergence and heterotic group formation.
Resumo:
The objective of this study was to verify the potential of SNAP III (Scheduling and Network Analysis Program) as a support tool for harvesting and wood transport planning in Brazil harvesting subsystem definition and establishment of a compatible route were assessed. Initially, machine operational and production costs were determined in seven subsystems for the study area, and quality indexes, construction and maintenance costs of forest roads were obtained and used as SNAP III program input data. The results showed, that three categories of forest road occurrence were observed in the study area: main, secondary and tertiary which, based on quality index, allowed a medium vehicle speed of about 41, 30 and 24 km/hours and a construction cost of about US$ 5,084.30, US$ 2,275.28 and US$ 1,650.00/km, respectively. The SNAP III program used as a support tool for the planning, was found to have a high potential tool in the harvesting and wood transport planning. The program was capable of defining efficiently, the harvesting subsystem on technical and economical basis, the best wood transport route and the forest road to be used in each period of the horizon planning.
Resumo:
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
The type of artificial light used for inducing photoperiod effect in begonia's seedlings at greenhouse has fundamental importance in the growth and development of these plants and directly reflects in the electrical energy consumption used in this production process. The objective of this research was to analyze the technical and economic feasibility of replacing the current technology of artificial lighting used by the producers (incandescent lamps), by the technology of discharge lamps with the purpose of inducing photoperiod in a greenhouse. The analysis results indicate that the discharge lamp of 32 W Tubular Fluorescent discharge lamp was the one that presented the lower peak demand and lower average energy consumption of 85.01% compared to incandescent filament lamp of 100 W that is the technology of bigger consumption and currently used by the producer.
Experimental evaluation of the performance of a wireless sensor network in agricultural environments
Resumo:
The aim of this study was to perform an experimental study to evaluate the proper operation distance between the nodes of a wireless sensor network available on the market for different agricultural crops (maize, physic nut, eucalyptus). The experimental data of the network performance offers to farmers and researchers information that might be useful to the sizing and project of the wireless sensor networks in similar situations to those studied. The evaluation showed that the separation of the nodes depends on the type of culture and it is a critical factor to ensure the feasibility of using WSN. In the configuration used, sending packets every 2 seconds, the battery life was about four days. Therefore, the autonomy may be increased with a longer interval of time between sending packets.
Resumo:
Light emitting diode (LED) has been used in commercial poultry industry by presenting superior energy savings and providing feasibility on production process. The objective of this research was to evaluate performance and carcass yield of broiler chickens exposed to different LED colors compared with fluorescent lamps. For that, two experiments (E1 and E2) were performed and 2,646 Cobb® chickens were used. In experiment E1, male birds were exposed to 20 lux artificial lighting with red, yellow, blue, and white LED bulbs; and fluorescent bulb. In experiment E2, male and female birds were exposed to 15 lux artificial lighting with red and blue LED bulbs; and fluorescent bulb. Cumulative weight gain (kg), feed intake (kg), feed conversion, hot carcass weight (kg), carcass yield (%), and breast and thigh + drumstick yield (%) were used as response variables. Results showed no difference (p > 0.05) among treatments for performance, carcass yield, and cut yield in experiment E1. In experiment E2 there was only difference between genders (p < 0.05) and males showed higher total weight gain, feed intake, hot carcass weight and thigh + drumstick yield. Different LED color use had same effect as fluorescent lights on broiler performance and carcass yield.
Resumo:
This study aims to analyze the impacts of the reservoir network within Pereira de Miranda - CE catchment (also called Pentecoste) over sediment transport and storage capacity of the system. The survey of the "damming" was carried out using satellite images. We identified 502 erosion units, derived from overlaying maps of the Universal Soil Loss Equation parameters, which allowed the estimation of localized erosion in the basin and identification of areas potentially generating sediment. In order to estimate silting in Pentecoste reservoir, different system structure scenarios were considered. An average erosion rate of 59 t ha-1year-1 was estimated. According to the model, the silting of Pentecoste reservoir may vary from 1.1 to 2.6% per decade, depending on the scenario considered. It is also observed that the reservoirs upstream can retain up to 58% of the sediment that would reach the Pentecoste reservoir. Very small reservoirs with a capacity of up to 100,000 m³, although representing only 1.83% of the system water availability, are able to retain almost 8% of total sediment produced.