32 resultados para elasticity of substitution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 13C natural abundance technique was applied to study C dynamics after land-use change from native savanna to Brachiaria, Pinus, and Eucalyptus in differently textured Cerrado Oxisols. But due to differences in the d13C signatures of subsoils under native savanna and under introduced species, C substitution could only be calculated based on results of cultivated soils nearby. It was estimated that after 20 years, Pinus C had replaced only 5 % of the native C in the 0-1.2 m layer, in which substitution was restricted to the top 0.4 m. Conversely, after 12 years, Brachiaria had replaced 21 % of Cerrado C to a depth of 1.2 m, where substitution decreased only slightly throughout the entire profile. The high d13C values in the subsoils of the cultivated sites led to the hypothesis that the natural vegetation there had been grassland rather than Cerrado sensu stricto, in spite of the comparable soil and site characteristics and the proximity of the studied sites. The hypothesis was tested using aerial photographs of 1964, which showed that the cultivated sites were located on a desiccated runoff head. The vegetation shift to a grass-dominated savanna formation might therefore have occurred in response to waterlogging and reduced soil aeration. A simple model was developed thereof, which ascribes the different Cerrado formations mainly to the plant-available water content and soil aeration. Soil fertility is considered of minor significance only, since at the studied native savanna sites tree density was independent of soil texture or nutrient status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate the efficiency of sulfate green rust (GR2) to remove Ni from solution, GR2 samples were synthesized under controlled laboratory conditions. Some GR2 samples were synthesized from Fe(II) and Fe(III) sulfate salts by precipitation. Other samples were prepared by coprecipitation, of Ni(II), Fe(II) and Fe(III) sulfate salts, i.e., in the presence of Ni. In another sample, Ni(II) sulfate salt was added to pre-formed GR2. After an initial X-ray diffraction (XRD) characterization all samples were exposed to ambient air in order to understand the role of Ni in the transformation of the GR2 samples. XRD was repeated after 45 days. The results showed that Nious GR2 prepared by coprecipitation is isomorphous to Ni-free GR2, i.e. Ni is incorporated into the crystalline structure. Fe(II) was not replaced by Ni(II) in the crystalline structure of GR2 formed prior to exposure to solution-phase Ni. This suggests Ni was adsorbed to the GR2 surface. Sulfate green rust is more efficient in removing Ni from the environment by coprecipitation.