60 resultados para dilute-nitric-acid hydrolysis
Resumo:
The present study investigated the carboxylation of silver nanoparticles (AgNPs) by 1:3 nitric acid-sulfuric acid mixtures for immobilizing Aspergillus oryzae β-galactosidase. Carboxylated AgNPs retained 93% enzyme upon immobilization and the enzyme did not leach out appreciably from the modified nanosupport in the presence of 100 mmol L-1 NaCl. Atomic force micrograph revealed the binding of β-galactosidase on the modified AgNPs. The optimal pH for soluble and carboxylated AgNPs adsorbed β-galactosidase (IβG) was observed at pH 4.5 while the optimal operating temperature was broadened from 50 ºC to 60 ºC for IβG. Michaelis constant, Km was increased two and a half fold for IβG while Vmax decreases slightly as compared to soluble enzyme. β-galactosidase immobilized on surface functionalized AgNPs retained 70% biocatalytic activity even at 4% galactose concentration as compared to enzyme in solution. Our study showed that IβG produces greater amount of galacto-oligosaccharides at higher temperatures (50 ºC and 60 ºC) from 0.1 mol L-1 lactose solution at pH 4.5 as compared to previous reports.
Resumo:
The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC) followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min) did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls). The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.
Resumo:
Bacterial cellulose produced from Gluconacetobacter xilinus was used to produce cellulose nanocrystals by sulfuric acid hydrolysis. Hydrolysis was performed with 64% sulfuric acid at 50 ºC with the hydrolysis time ranging between 5 and 90 min. The production of nanocrystals was observed to have size distributions that were dependent on hydrolysis times up to 10 min, after which time the suspensions showed distributions closer in size. Results from thermal analysis and X-ray diffraction showed that the amorphous cellulose was removed, leaving only the crystalline portion. Self-supported films were formed from the suspension of nanocrystals and had iridescence characteristics. The films were characterized by microscopy measures and specular reflectance.
Resumo:
A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 µL of digested samples into the pretreated graphite platform with co-injection of 5 µL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 µg L-1 Cd and 0.7 µg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).
Resumo:
The precise nature of the reaction between nitric acid and sodium ortho-vanadate solutions has been studied by means of electrometric techniques involving potentiometric and conductometric titrations. The well defined inflections and breaks in the titration curves confirm the existence of the anions, pyro-V2O7(4-), meta-VO3- and poly-H2V10O28(4-) corresponding to the ratios of VO4(3-):H+ as 1:1, 1:2 and 1:2.6 in the neighborhood of pH 10.5, 7.4 and 3.6, respectively. The interaction of cerium(III) nitrate with sodium vanadate solutions, at specific pH levels 12.4, 10.5, 7.4 and 3.6 was also studied by potentiometric and conductometric titrations between the reactants. The end-points obtained from the sharp inflections in the titration curves provide definite evidence for the formation and precipitation of cerium ortho-Ce2O3.V2O5, pyro-2Ce2O3.3V2O5 and meta-Ce2O3.3V2O5 vanadates in the neighborhood of pH 7.4, 6.2 and 4.8, respectively. Analytical investigations on the precipitates formed confirm the results of the electrometric study.
Resumo:
An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.
Resumo:
Abstract: The concentration of heavy metals (Cr, Fe, Al, As, Cd, Cu, Pb, Mo, Ni, Se and Zn) was evaluated in the blood of nestling blue macaws (Anodorhynchus hyacinthinus) captured in the Pantanal, Mato Grosso do Sul (n=26) in 2012; this was based on the hypothesis that these birds exhibit levels of these heavy metals in their organism and that these interfere in hatching success, weight and age of the chicks. Blood samples were digested with nitric acid and hydrochloric acid and the quantification of metals was performed by ICP-OES (Optical Emission Spectroscopy and Inductively Coupled Plasma). Blood samples of nestlings showed concentrations of Cr (0.10μg/g) Fe (3.06μg/g) Al (3.46μg/g), Cd (0.25μg/g) Cu (0.74μg/g), Mo (0.33μg/g), Ni (0.61μg/g), Se (0.98μg/g), and Zn (2.08μg/g). The levels of heavy metals found were not associated with weight, age and hatching success of the chicks.
Resumo:
The binding capacity of concanavalin A (Con A) to condensed euchromatin and heterochromatin was investigated in chicken erythrocyte nuclei (CEN), mouse liver cells, Zea mays mays meristematic cells and Drosophila melanogaster polytene chromosomes after 4 N HCl hydrolysis to determine whether binding was preferentially occurring in bands and heterochromatin. Dry mass (DM) variation was investigated in CEN by interference microscopy. Feulgen and Con A reactions were employed for all materials to correlate the loci of the two reactions. Quantifications and topological verifications were carried out by video image analysis (high performance cytometry). It was observed that 4 N HCl hydrolysis caused an important DM loss in CEN leaving a level corresponding to the average DNA DM content. In this material, Con A binding was restricted to the nuclear envelope, which reinforces the idea of the absence of a nuclear matrix in these cells. The other cell types exhibited a correspondence of Feulgen-positive and Con A-reactive areas. The Con A reaction was highly positive in the condensed chromatin areas and heterochromatin. This fact led us to speculate that Con A-positive proteins may play a role in the chromatin condensation mechanism, endowing this structure with physico-chemical stability towards acid hydrolysis and contributing to its rheological properties.
Resumo:
One third of the world's fishing produce is not directly used for human consumption. Instead, it is used for making animal food or is wasted as residue. It would be ideal to use the raw material thoroughly and to recover by-products, preventing the generation of residues. With the objectives of increasing the income and the production of the industry, as well as minimizing environmental and health problems from fish residue, chemical silage from Tilapia (Oreochromis niloticus) processing residues was developed after homogenization and acidification of the biomass with 3% formic acid: propionic, 1:1, addition of antioxidant BHT and maintenance of pH at approximately 4.0. Analyses to determine the moisture, protein, lipids and ash were carried out. The amino acids were examined in an auto analyzer after acid hydrolysis, except for the tryptophan which was determined through colorimetry. The tilapia silage presented contents that were similar to or higher than the FAO standards for all essential amino acids, except for the tryptophan. The highest values found were for glutamic acid, lysine and leucine. The results indicate a potential use of the silage prepared from the Nile tilapia processing residue as a protein source in the manufacturing of fish food.
Resumo:
Frequent nut intake is associated with protective effects against cardiovascular diseases. In addition to the generally high contents of unsaturated fatty acids, polyphenol compounds seem to be also implicated in health promoting effects of nuts due to their antioxidant properties. In this way, eleven different kinds of nuts, including pinhao seeds (Araucaria angustifolia) and Brazil nuts (Bertholletia excelsa), typical of Brazil, were analyzed for the content of phenol compounds, including the potent anti-mutagenic and anti-cancer ellagic acid, and antioxidant capacity of methanolic extracts. The antioxidant capacity varied a hundred times among the different nuts, from 1.2 to 120 mg of Trolox equivalents.100 g-1 (FW). Total ellagic acid was determined after acid hydrolysis of ellagitannins and ellagic acid glycosides, and it was detected in only 3 of the 11 samples. The content of free and total ellagic acid in nuts varied from 0.37 to 41 and from 149 (chestnuts) to 823 (walnuts) mg.100 g-1 (FW), respectively. Among nuts, samples with the highest contents of ellagic acid (walnuts and pecans) also presented the highest total phenol contents and DPPH radical scavenging capacities. Pinhao seeds and Brazil nuts did not present significant amounts of phenols nor antioxidant capacity.
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.
Resumo:
The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH) and by autohydrolysis (AH) as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1) or AEH 5% (201.3 g kg- 1). Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival.
Resumo:
Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.
Resumo:
Endothelial nitric oxide synthase (eNOS) is the primary physiological source of nitric oxide (NO) that regulates cardiovascular homeostasis. Historically eNOS has been thought to be a constitutively expressed enzyme regulated by calcium and calmodulin. However, in the last five years it is clear that eNOS activity and NO release can be regulated by post-translational control mechanisms (fatty acid modification and phosphorylation) and protein-protein interactions (with caveolin-1 and heat shock protein 90) that direct impinge upon the duration and magnitude of NO release. This review will summarize this information and apply the post-translational control mechanisms to disease states.
Resumo:
Aspirin has always remained an enigmatic drug. Not only does it present with new benefits for treating an ever-expanding list of apparently unrelated diseases at an astounding rate but also because aspirin enhances our understanding of the nature of these diseases processe. Originally, the beneficial effects of aspirin were shown to stem from its inhibition of cyclooxygenase-derived prostaglandins, fatty acid metabolites that modulate host defense. However, in addition to inhibiting cyclooxygenase activity aspirin can also inhibit pro-inflammatory signaling pathways, gene expression and other factors distinct from eicosanoid biosynthesis that drive inflammation as well as enhance the synthesis of endogenous protective anti-inflammatory factors. Its true mechanism of action in anti-inflammation remains unclear. Here the data from a series of recent experiments proposing that one of aspirin's predominant roles in inflammation is the induction of nitric oxide, which potently inhibits leukocyte/endothelium interaction during acute inflammation, will be discussed. It will be argued that this nitric oxide-inducing effects are exclusive to aspirin due to its unique ability, among the family of traditional anti-inflammatory drugs, to acetylate the active site of inducible cyclooxygenase and generate a family of lipid mediators called the epi-lipoxins that are increasingly being shown to have profound roles in a range of host defense responses.