84 resultados para di(2-ethylhexyl)phosphoric acid
Resumo:
The antioxidant activities of ethanolic crude extract (LPCE) and its four different solvent sub-fractions (namely, diethyl ether fraction (LPDF), ethyl acetate fraction (LPEF), n-butyl alcohol fraction (LPBF) and residue fraction (LPR)) from longan pericarps were investigated employing various systems including 2,2-diphenyl-1-picrylhydrazyl (DPPH)/ 2,2'-amino-di(2-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS)/hydroxyl radical scavenging activity, total phenolic content and reducing power. Each extract showed concentration-dependent antioxidant activity. LPEF showed the highest scavenging activity against DPPH, ABTS and hydroxyl radicals with EC50 values of 0.506, 0.228 and 4.489 mg/mL, respectively. LPEF showed the highest reducing power with EC50 values of 0.253 mg/mL. The next was LPDF with EC50 values of 0.260 mg/mL. LPEF possessed the highest total phenolic content (230.816 mg/g, expressed as gallic acid equivalents), followed by LPDF, LPBF, LPCE and LPR. The results suggested that longan pericarp fractions possessed significant antioxidant activities and could be a promising source of natural antioxidant.
Resumo:
Mallow leaves (Malva sylvestris L.) with initial moisture of 5.02±0.003 on dry basis (82.5% on wet basis) were dried using three different drying methods, microwave, convective and vacuum. The leaves that weigh 75 g each were dried until their moisture fell down to 0.10±0.005 on dry basis (approximately 9% on wet basis). The following drying levels were used in each of the drying processes: 6.67, 8.67, 10, 11.33 W g-1 microwave power density; 50, 75, 100 and 125 °C for convective drying; and 3, 7 kPa at 50 and 75 °C for vacuum drying. Drying periods ranged from 6-10, 26-150 and 38-130 min. for microwave, convective and vacuum drying, respectively. Effective moisture diffisuvities ranged from 2.04403 10-10-3.63996 10-12 m2 s-1, 1.70182 10-11-1.10084 10-10 m2 s-1 and 1.85599 10-11-5.94559 10-10 m2 s-1 for microwave, convective and vacuum drying, respectively. According to ascorbic acid content and color parameters, the best microwave power density was found 10 W g-1 with a drying period of 6.5 min.
Resumo:
OBJETIVO: Para evaluar la infección y obtener el estado adulto del cestodos, se buscó reproducir la equinococosis en perros a partir de quiste hidatídico de origen porcino. MÉTODOS: Se formaron 2 grupos, uno de 5 y otro de 3 perros, a cada animal del grupo experimental se le dió 2 g de membrana germinativa de quíste hidatídico fértil por vía oral, el segundo grupo fue testigo. Ambos grupos fueron evaluados clínica, serológica y parasitológicamente, en el grupo experimental se sacrificó un animal el día 35 de la infección y los siguientes cada 5 dias hasta el 55, en el segundo grupo todos se sacrificaron el día 55. Se observaron huevos del cestodos en heces a partir del dia 51 postinfección. La evaluación morfológica se realizó mediante observación microscópica del raspado de mucosa intestinal. RESULTADOS: De 50 cestodos analizados, 10 de cada uno de los perros infectados, 49 (98%) presentaron 3 proglótidos y 1 (2%) tenía 4; 18 (36%) de los cestodos presentaban un proglótido grávido. La longitud de los estróbilos varió de 1,6 a 2,6 mm. El número promedio de los ganchos largos y cortos fue de 31 y 34 respectivamente. La longitud de los ganchos largos varió entre 0,081 y 0,09 mm, los ganchos cortos fluctuaron entre 0,034 y 0,041 mm. En los perros evaluados clínicamente, el número de leucocitos y la cantidad de proteínas plasmáticas fue significativamente mayor en el grupo testigo (P < 0,05); la cantidad de alfa globulinas fue mayor en el grupo infectado (P < 0,05). CONCLUSIONES: Los resultados permiten confirmar el ciclo perro-cerdo y una infección subclínica en los huéspedes definitivos, lo que dificulta su diagnóstico y control en una especie intimamente relacionada con el hombre.
Resumo:
INTRODUCTION: Visceral leishmaniasis is endemic in 88 countries, with a total of 12 million people infected and 350 million at risk. In the search for new leishmanicidal agents, alkaloids and acetogenins isolated from leaves of Annona squamosa and seeds of Annona muricata were tested against promastigote and amastigote forms of Leishmania chagasi. METHODS: Methanol-water (80:20) extracts of A. squamosa leaves and A. muricata seeds were extracted with 10% phosphoric acid and organic solvents to obtain the alkaloid and acetogenin-rich extracts. These extracts were chromatographed on a silica gel column and eluted with a mixture of several solvents in crescent order of polarity. The compounds were identified by spectroscopic analysis. The isolated compounds were tested against Leishmania chagasi, which is responsible for American visceral leishmaniasis, using the MTT test assay. The cytotoxicity assay was evaluated for all isolated compounds, and for this assay, RAW 264.7 cells were used. RESULTS: O-methylarmepavine, a benzylisoquinolinic alkaloid, and a C37 trihydroxy adjacent bistetrahydrofuran acetogenin were isolated from A. squamosa, while two acetogenins, annonacinone and corossolone, were isolated from A. muricata. Against promastigotes, the alkaloid showed an IC50 of 23.3 µg/mL, and the acetogenins showed an IC50 ranging from 25.9 to 37.6 µg/mL; in the amastigote assay, the IC50 values ranged from 13.5 to 28.7 µg/mL. The cytotoxicity assay showed results ranging from 43.5 to 79.9 µg/mL. CONCLUSIONS: These results characterize A. squamosa and A. muricata as potential sources of leishmanicidal agents. Plants from Annonaceae are rich sources of natural compounds and an important tool in the search for new leishmanicidal therapies.
Resumo:
OBJECTIVE: To verify whether the guidelines for the treatment of heart failure have been adopted at a university hospital. The guidelines recommend the following: use of angiotensin-converting enzyme inhibitors for all patients with systolic ventricular dysfunction, use of digitalis and diuretics for symptomatic patients, use of beta-blockers for patients in functional classes II or III, use of spironolactone for patients in functional classes III or IV. METHODS: We analyzed the prescriptions of 199 patients. All these patients had ejection fraction (EF) <=0.50, their ages ranged from 25 to 86 years, and 142 were males. Cardiomyopathy was the most frequent diagnosis: 67 (33.6%) patients had dilated cardiomyopathy, 65 (32.6%) had ischemic cardiomyopathy. RESULTS: Angiotensin-converting enzyme inhibitors were prescribed for 93% of the patients. 71.8% also had a prescription for digitalis, 86.9% for diuretics, 27.6% for spironolactone, 12% for beta-blockers, 37.2% for acetylsalicylic acid, 6.5% for calcium channel antagonists, and 12.5% for anticoagulants. In regard to vasodilators, 71% of the patients were using captopril (85.2mg/day), 20% enalapril (21.4mg/day), 3% hydralazine and nitrates. In 71.8% of the cases, the dosages prescribed were in accordance with those recommended in the large studies. CONCLUSION: Most patients were prescribed the same doses as those recommended in the large studies. Brazilian patients tolerate well the doses recommended in the studies, and that not using these doses may be a consequence of the physician's fear of prescribing them and not of the patient's intolerance.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Phosphate "fixation" is the convertion of soluble into insoluble phosphate in the soil. There are many factors conditioning phosphate fixation by soil such as reactions originating less soluble compounds (phosphates of iron, aluminum, calcium, magnesium, etc.), PO4-3 adsorption by the colloidal fraction of soils, PO4-3 absorption by the soil microflora, etc. Certain soils of the state of São Paulo (Brazil) are relatively rich in both iron and aluminum oxides. PO4-3 fixation, using P31 and P32 has been verified by researchers, specially with "Terra Roxa". The known methods for fixation evaluation are conventional as this depends on phosphate solution concentration, pH, time of contact between soil and solution, relation of sample weight to solution volume, shaking time, etc. In this experiment, the following conventional method was used: 4 g of soil were shaken for 15 minutes at 30-40 rpm, in 300 ml Erlenmeyer flask in a Wagner shaking machine, together with 100 ml of 0,03 normal phosphate solution (being 0,01 normal as PO4-3 contributed by H8PO4 and 0,02 normal as PO4-3 from KH2PO4). After shaking it was set aside for 24 hours and then filtered. Phosphate was determined in a suitable aliquot of both the original solution (blank) and the soil extract, by the vanadomolibidic-phosphoric acid method. From phosphate concentration in the blank minus phosphate concentration in the soil stract the rate of fixation by 100 g of soil was calculated. The data obtained show that "Terra Roxa" and "Terra Roxa Misturada" have a fairly high PO4-3 fixation capacity, varying from 10 to 24 milliequivalents of PO4-3 per 100 g of soil.
Effects of ethephon and urea on ripening of fruits and leaf abscission of coffee (Coffea arábica L.)
Resumo:
A field experiment was carried out to investigate the effects of ethephon and urea on ripening of fruits and leaf abscission of coffee plant. Ethephon (2-chloroethane phosphonic acid) sprays were applied to green Coffea arábica berries 26 days before counting date in concentrations of 0.5 and 0.25 ml/1 from Ethrel (240 a.i./l). The chemical accelerated the onset of fruit ripening at both concentrations. The efficacy of ethephon was increased adding urea. Ethephon 0.5 ml/1 promoted abscission of leaves and low concentration reduced shedding of leaves. The treatments did not affect the growth and production on the next harvest.
Resumo:
The bioassay-guided fractionation of stems from Kielmeyera variabilis, traditionally used in Brazilian folk medicine, yielded assiguxanthone-B (1), kielcorin (4), 2,5-dihydroxybenzoic acid (3), and a mixture of xanthones containing assiguxanthone-B (1) and 1,3,5,6-tetrahydroxy-2-prenylxanthone (2) (1:1 w/w). The xanthone mixture inhibited Staphylococcus aureus and Bacillus subtilis at a concentration of 6.25 µg/ml. When tested alone, the minimal inhibitory concentration of assiguxanthone-B was 25 µg/ml against B. subtilis. Kielcorin and 2,5-dihydroxybenzoic acid were inactive against both strains. None of the fractions was active against Escherichia coli or Pseudomonas aeruginosa. Viable cells of S. aureus were reduced by a 1-3 log CFU/ml within 12 h after exposure of one to eight times the MIC of the xanthone mixture. It is not known whether the tetrahydroxy-2-prenylxanthone or other components of the xanthone mixture are responsible for the main antibacterial activity or whether additive or synergistic action is involved
Resumo:
Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.
Erosão em sulcos e entressulcos em razão do formato de parcela em Argissolo Vermelho-Amarelo arênico
Resumo:
O objetivo deste trabalho foi avaliar o efeito de parcelas de erosão com seções transversais da superfície do solo retangular (STR) e triangular (STT) na perda de solo e água e na erodibilidade, em sulcos e entressulcos. O experimento foi conduzido em 1998, em um Argissolo Vermelho-Amarelo distrófico arênico, preparado convencionalmente. As dimensões das parcelas de entressulcos foram de 0,50 m por 0,75 m; nos sulcos com STR, as dimensões foram de 0,20 m por 5,90 m, e nos de STT, de 0,50 m por 5,90 m. Utilizou-se chuva simulada constante de 65 mm h-1 nos entressulcos, durante 90 minutos. Nos sulcos, após pré-umedecimento do solo, foram aplicadas cinco vazões extras crescentes de 0,0002 m³ s-1 até 0,0010 m³ s-1. A desagregação nos entressulcos Di (2,09.10-4 kg m-2 s-1 nas STR e 3,35.10-4 kg m-2 s-1 nas STT), a erodibilidade nos entressulcos Ki (1,77.10(6) kg s m-4 nas STR e 2,00.10(6) kg s m-4 nas STT), a erodibilidade em sulcos Kr (0,0110 kg N-1 s-1 nas STR e 0,0074 kg N-1 s-1 na STT) e a tensão crítica de cisalhamento tauc (2,61 N m-2 na STR e 2,00 N m-2 na STT) não foram estatisticamente diferentes nos dois formatos de seção transversal, e podem ser determinados usando-se qualquer um dos formatos de parcelas em solos de textura superficial arenosa.
Resumo:
We present a new binuclear complex, Fe2III(BBPMP)(OH)(O2 P(OPh)2) ClO4.CH3OH, 3, where BBPMP is the anion of 2,6-bis(2-hydroxybenzyl)(2-pyridylmethyl) aminomethyl-4-methylphenol, as a suitable model for the chromophoric site of purple acid phosphatases coordinated to phosphate. The complex was obtained by the reaction of complex 2, Fe2III(BBPMP)(O2P(OPh) 2)2 ClO4.H2O, in CH3CN with one equivalent of triethylamine. Based on the chromophoric properties of the model complex, lmax = 560 nm/ e = 4480 M-1 cm-1/Fe2 compared to the enzyme coordinated to phosphate, we can speculate about a possible mechanism of fixing this oxyanion by the oxidized form of the enzymes.
Resumo:
The phase diagram formation of microemulsion-based gels composed of an anionic surfactant aerosol-OT sodium bis (2-ethylhexyl)-sulphosuccinate), water, gelatin and an organic solvent is presented for heptane. The stability of this organo- gel, when an enzyme is immobilized is discussed in terms of its reutilization in various esters synthesis.
Resumo:
The present work proposes the application of the 4-Hidroxy-3-(2-hydroxynaphtylazo)-benzenesulphonic acid (C.I. 15670), Alizarine Violet N (AVN), as a reagent for direct aluminium determination using molecular absorption spectrophotometry in the presence of tensoatives. Al(III) cation reacts with AVN in pH 9.4, forming a red complex, stable for at least 24 hours, with absorption minimum at 607nm and, against a reagent blank, (epsiloncomplex - epsilonreagent) = -2.71x10(4) L.mol-1.cm-1. The reaction occurs in the presence of a Triton-X100 and CTAB tensoatives mixture, in the presence of EDTA. Al(III) determination is possible in the linear range of 50 up to 400ng.mL-1, with a detection limit of 41 ng.mL-1.
Resumo:
The fuel cell principle was discovered by Sir Grove 150 years ago. However material problems prohibited its commercialization for a long time. A change has been occurring during the last 30 years, so two types of fuel cell technologies can be distinguished: low and high temperature operation cells. Nowadays, only phosphoric acid cells are commercially offered as 200 kWel power plants. Membrane cells are more suitable for automobile electrotraction with a very low (or no) environmental impact. The fuel continues, however, to play a very particular role, since hydrogen is not easy to store and to transport. The more promising target is the utilization of liquid methanol. The Brazilian scenario concerning this kind of technology is discussed.