104 resultados para dehydration-rehydration
Resumo:
Faecal samples were obtained from 190 children, aged 0 to 5 years, admitted to a public hospital in Belém, Pará, Brazil. These patients were placed in a pediatric ward with 40 beds distributed in six rooms. Case were classified into three groups: (a) nosocomial: children who developed gastroenteritis 72 hr or later after admission; (b) community-acquired: patients admitted either with diarrhoea or who had diarrhoea within 72 hr following admission; (c) non-diarrhoeic: those children who had no diarrhoea three days before and three days after collection of formed faecal sample. Specimens were routinely processed for the presence of rotaviruses, bacteria and parasites. Rotaviruses were detected through enzyme-linked immunosorbent assay (ELISA) and subsequently serotyped/electrophoretyped. Rotaviruses were the most prevalent enteropathogens among nosocomial cases, accounting for 39 % (9/23) of diarrhoeal episodes; on the other hand, rotaviruses ocurred in 8.3 % (11/133) and 9 % (3/34) of community-acquired and non-diarrhoeic categories, respectively. Mixed infections involving rotavirus and Giardia intestinalis and rotavirus plus G. intestinalis and Entamoeba histolytica were detected in frequencies of 8.6 and 4.3 %, respectively, in the nosocomial group. The absence of bacterial pathogens in this category, and the unusual low prevalence of these agents in the other two groups may reflect the early and routine administration of antibiotics following admission to this hospital. Rotavirus serotype 2 prevailed over the other types, accounting for 77.8 % of isolates from nosocomial diarrhoeal episodes. In addition, at least five different genomic profiles could be observed, of which one displayed an unusual five-segment first RNA cluster. Dehydration was recorded in all cases of hospital-acquired, rotavirus-associated diarrhoea, whereas in only 57 % of nosocomial cases of other aetiology. It was also noted that nosocomial, rotavirus-associated diarrhoeal episodes occur earlier (7 days), following admission, if compared with those hospital-acquired cases of other aetiology (14 days).
Resumo:
A survey of Isospora suis performed in 177 faecal samples from 30 swine farms detected thin wall type I. suis oocysts in seven samples. This type of oocyst measuring 23.9 by 20.7 mm had a retracted thin wall similar to that of the genus Sarcocystis. This type of oocysts, isolated from four different faecal samples, was inoculated in four-five-days-old piglets free of contamination in order to verify the life cycle and pathogenicity of the species. The pigs were kept in individual metal cages and fed with cow milk. Daily faecal collections and examinations were performed until the 21st day after infection. MacMaster and Sheather' s methods were used for oocyst counting and identification. Infected piglets produced yellowish-pasty diarrhoea with slight dehydration. The prepatent and patent periods were respectively from 6 to 9 and 3 to 10 days after infection. Oocyst elimination was interrupted on the 10th and 11th days after infection with biphasic cycles. Thin and thick wall oocysts were detected in the same faecal samples. Thin walls were not observed in unsporulated oocysts. The observations suggest that this type of oocysts could appear in specific strains which occur in the later stages of their development. These oocysts seem to be responsible for clinical and pathogenic signs of neonatal isosporosis in pigs.
Resumo:
Adults and larvae of Triatoma infestans spend daylight hours assembled in shaded places. An assembling factor has been demonstrated in the excrement of this species. We analysed different aspects of the dynamics of the response of bugs. Recently fed insects do not aggregate around faeces. They start to show a significant assembling response from the 8th hour after feeding onwards. Just deposited faeces do not evoke assembling, but a significant rejection instead. This reaction switches 3 h after deposition, when the faeces become attractive to the insects. The attractiveness of faeces persists for about 10 days and can be recovered after this time by rehydration. These findings are discussed in relation to the biological role of faeces and the dynamics of the use of refuges by T. infestans.
Resumo:
Rotavirus is a major cause of infantile acute diarrhea, causing about 440,000 deaths per year, mainly in developing countries. The World Health Organization has been recommending the assessment of rotavirus burden and strain characterization as part of the strategies of immunization programs against this pathogen. In this context, a prospective study was made on a sample of 134 children with acute diarrhea and severe dehydration admitted to venous fluid therapy in two state hospitals in Rio de Janeiro, Brazil, from February to September 2004. Rotavirus where detected by polyacrylamide gel electrophoresis (PAGE) and by an enzyme-linked immunoassay to rotavirus and adenovirus (EIARA) in 48% of the children. Positive samples for group A rotavirus (n = 65) were analyzed by reverse transcription/heminested multiplex polymerase chain reaction to determine the frequency of G and [P] genotypes and, from these, 64 samples could be typed. The most frequent G genotype was G1 (58%) followed by G9 (40%). One mixed infection (G1/G9) was detected. The only [P] genotype identified was [8]. In order to estimate the rotavirus infection frequency in children who acquired diarrhea as hospital infection in those hospitals, we studied 24 patients, detecting the pathogen in 41% of them. This data suggest that genotype G9 is an important genotype in Rio de Janeiro, with implications to the future strategies of vaccination against rotavirus, reinforcing the need of continuous monitoring of circulating strains of the pathogen, in a surveillance context.
Resumo:
A work was carried out with the purpose of verifying the biochemical changes associated to soybean (Glycine max (L.) Merrill) seeds osmoconditioning. Seeds of the UFV 10, IAC 8 and Doko RC cultivars harvested at R8 development stage and submitted to different treatments were used. The biochemical evaluations were performed during seed storage, after the hydration-dehydration process. Initially, seeds were osmoconditioned in a polyethylene glycol (PEG 6000) solution, with the osmotic potential of -0.8 MPa and 20ºC, for a period of four days. After that, seeds were dried back until the initial moisture content (10-11%) and stored in natural conditions for three and six months. Two controls were used: untreated seeds (dry seeds) and water soaked seeds. Seed changes in protein and lipid, hexanal accumulation and fatty acids contents were evaluated. The results showed that seed storage under laboratory natural conditions caused reduction in protein, lipid and polyunsaturated fatty acids content and promoted hexanal production. Storage periods reduced protein levels for all treatments, however the PEG 6000 treatment showed lower protein reduction. The soybean seed storage increased hexanal production, but hexanal levels were smaller with osmoconditioning comparing to the other imbibition treatments.
Resumo:
The objective of this work was to determine the viability equation constants for cottonseed and to detect the occurrence and depletion of hardseededness. Three seedlots of Brazilian cultivars IAC-19 and IAC-20 were tested, using 12 moisture content levels, ranging from 2.2 to 21.7% and three storage temperatures, 40, 50 and 65ºC. Seed moisture content level was reached from the initial value (around 8.8%) either by rehydration, in a closed container, or by drying in desiccators containing silica gel, both at 20ºC. Twelve seed subsamples for each moisture content/temperature treatment were sealed in laminated aluminium-foil packets and stored in incubators at those temperatures, until complete survival curves were obtained. Seed equilibrium relative humidity was recorded. Hardseededness was detected at moisture content levels below 6% and its releasing was achieved either naturally, during storage period, or artificially through seed coat removal. The viability equation quantified the response of seed longevity to storage environment well with K E = 9.240, C W = 5.190, C H = 0.03965 and C Q = 0.000426. The lower limit estimated for application of this equation at 65ºC was 3.6% moisture content.
Resumo:
Well-ordered kaolinite from the Brazilian Amazon Region (State of Pará) was initially reacted at 60 °C with a water dimethylsulfoxide mixture. After washing and characterisation, the resulting material was washed several times with methanol and in the final step with water. The water molecules displace the previously dimethylsulfoxide intercalated molecules and two different hydrated kaolinites were obtained. An unstable phase characterized by an interplanar basal distance of 0,996 nm that after drying collapse to the stable 0,844 nm hydrated kaolinite. The dehydration of the sample to disordered kaolinite was accompanied by Powder X-ray Diffractometry, thermal analysis (simultaneous TG and DSC) and FTIR spectroscopy.
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
This work reports results of studies on the electrochemical and structural properties of a Ti/Zr-based metal hydride alloy covered by Ni and LaNi4,7Sn0,3 powder additives by ball milling. The effect of this treatment is investigated for the activation time, hydrogen storage capacity and equilibrium pressure, cycling stability and the hydration/dehydration kinetics. Charge and discharge cycles show a significant decrease of the activation time due to an increase of the active area caused by the milling treatment, independent of the additive. However, other results have evidenced little effect of the milling surface treatment on the charge storage capacity, hydrogen equilibrium pressure, and hydration/dehydration kinetics, for both the Ni and LaNi4,7Sn0,3 covered materials.
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.
Resumo:
We report the synthesis of amino(2-hydroxy-2-(4-methoxyphenyl)ethylamino)methaniminium (14) as a direct precursor of a tubastrine derivative (3-dehydroxy-4-methoxytubastrine). The synthetic steps involved functional group interconversions starting from 1-(4-methoxyphenyl)ethanone to obtain the guanidine-protected derivative 13. Tentative dehydration of 13 with SiOH-adsorbed CuSO4 resulted in guanidine deprotection only. This was an unexpected result, since there are no reports of CuSO4.SiOH as Boc-deprotecting of guanidines. The product 14 was obtained in five steps and 5.4 % overall yield, and constitutes a direct precursor of 3-dehydroxy-4-methoxytubastrine.
Resumo:
Edible films are thin materials based on biopolymers and food additives. The aim of this work is a review on the application of dynamic mechanical analysis in edible film technology. After a brief review of the linear visco-elasticity theory, a description of some practical aspects related to dynamic mechanical analysis, such as sample fixation and sample dehydration during analysis and types and modes of tests are presented. Thus, the use of temperature scanning analysis for glass transition and for plasticizer-biopolymer compatibility studies and frequency scanning tests, less common in edible film technology, are critically reviewed.
Resumo:
Glycerol is a byproduct of biodiesel production through transesterification of oils and fat. This article discusses the chemical transformation of glycerol in ethers, acetals and esters of high technological applications, especially in the fuel sector. Glycerol hydrogenolysis, dehydration to acrolein and oxidation are discussed as well, to show the potential use of glycerol for production of plastic monomers. Finally, the article shows other transformations, such as syn gas production, epichloridrin and glycerin carbonate.