127 resultados para crops
Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops
Resumo:
The objective of this work was to determine the influence of Zn, Mn and Cu on shoot dry matter yield and uptake of macro and micronutrients in upland rice, common bean and corn. Six greenhouse experiments were conducted using a Dark Red Latosol (Typic Haplusthox). Treatments consisted of application of Zn at 0, 5, 10, 20, 40, 80 and 120 mg kg-1, of Mn at 0, 10, 20, 40, 80, 160, 320 and 640 mg kg-1 and of Cu application at 0, 2, 4, 8, 32, 64 and 96 mg kg-1. Zinc increased yield of rice, Mn increased yields of corn and bean and Cu improved yields of rice and bean. Uptake of N, Ca, and Cu in rice was decreased by zinc treatment. In common bean, uptake of N, Mg, and Cu was increased by zinc application, whereas, uptake of P was decreased. Manganese increased uptake of Mg, Zn and Fe and decreased uptake of Ca, in corn. Uptake of K, Zn and Mn was increased and uptake of P and Cu was decreased by Mn application, in bean. Copper had positive and negative interactions in the uptake of macro and micronutrients, depending on crop species and nutrients involved.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.
Resumo:
The objective of this work was to evaluate the effect of cover crops and timing of pre-emergence herbicide applications on soybean yield under no-tillage system. The experiment consisted of four cover crops (Panicum maximum, Urochloa ruziziensis, U. brizantha, and pearl millet) and fallow, in addition to four herbicide timings (30, 20, 10, and 0 days before soybean sowing), under no-tillage system (NTS), and of two control treatments under conventional tillage system (CTS). The experimental design was a completely randomized block, in a split-plot arrangement, with three replicates. Soybean under fallow, P. maximum, U. ruziziensis, U. brizantha, and pearl millet in the NTS and soybean under U. brizantha in the CTS did not differ significantly regarding yield. Soybean under fallow in the CTS significantly reduced yield when compared to the other treatments. The amount of straw on soil surface did not significantly affect soybean yield. Chemical management of P. maximum and U. brizantha near the soybean sowing date causes significant damage in soybean yield. However, herbicide timing in fallow, U. ruziziensis, and pearl millet does not affect soybean yield.
Resumo:
The objective of this work was to evaluate the effect of cover crops and their desiccation times on upland rice yield and on the levels of nitrate and ammonium in a no-tillage soil. The experiment was carried out in a randomized blocks, with split plots and three replicates. Cover crops (plots) were sowed in the off-season (March 2009). In November 2009, at 30, 20, 10 and 0 days before rice sowing (split plots), herbicide was applied on the cover crops (fallow, Panicum maximum, Urochloa ruziziensis, U. brizantha and millet). Straw and soil were sampled (0 - 10 cm) at the sowing day, and after 7, 14, 21, 28 and 35 days. Straws from millet and fallow were degraded more rapidly and provided the lowest level of nitrate in the soil. Urochloa ruziziensis, U. brizantha and P. maximum produced higher amounts of dry matter, and provided the highest levels of nitrate in the soil. Millet provides the lowest nitrate/ammonium ratio and the highest upland rice yield. Desiccations carried out at 30 and 20 days before sowing had the largest levels of nitrate in the soil at the sowing date. Nitrogen content and forms in the soil are affected by cover crops and their desiccation times.
Resumo:
The objective of this work was to evaluate the efficacy of two nematodes, Steinernema feltiae and S. carpocapsae, to control mushroom flies and to evaluate the effect of these treatments on Agaricus bisporus production. Two mushroom cultivation trials were carried out in controlled conditions, in substrate previously infested with the diptera Megaselia halterata and Lycoriella auripila, with two treatments: 106infective juveniles (IJ) per square meter of S. feltiae and 0.5x106IJ m-2S. feltiae + 0.5x106IJ m-2S. carpocapsae. Another experiment was carried out using the same treatments to evaluate the possible nematode effect on mushroom yield. The number of adults emerging from the substrate was evaluated for each fly species. No decrease in the population of M. halterata was detected with nematode application, whereas the number of L. auripila was reduced in both treatments, particularly in the individual treatment with S. feltiae. The application of entomopathogenic nematodes has no adverse effect on mushroom production.
Resumo:
The objective of this work was to determine the efficiency of the Papadakis method on the quality evaluation of experiments with multiple-harvest oleraceous crops, and on the estimate of the covariate and the ideal plot size. Data from nine uniformity trials (five with bean pod, two with zucchini, and two with sweet pepper) and from one experiment with treatments (with sweet pepper) were used. Through the uniformity trials, the best way to calculate the covariate was defined and the optimal plot size was calculated. In the experiment with treatments, analyses of variance and covariance were performed, in which the covariate was calculated by the Papadakis method, and experimental precision was evaluated based on four statistics. The use of analysis of covariance with the covariate obtained by the Papadakis method increases the quality of experiments with multiple-harvest oleraceous crops and allows the use of smaller plot sizes. The best covariate is the one that considers a neighboring plot of each side of the reference plot.
Resumo:
Tissue analysis is a useful tool for the nutrient management of fruit orchards. The mineral composition of diagnostic tissues expressed as nutrient concentration on a dry weight basis has long been used to assess the status of 'pure' nutrients. When nutrients are mixed and interact in plant tissues, their proportions or concentrations change relatively to each other as a result of synergism, antagonism, or neutrality, hence producing resonance within the closed space of tissue composition. Ternary diagrams and nutrient ratios are early representations of interacting nutrients in the compositional space. Dual and multiple interactions were integrated by the Diagnosis and Recommendation Integrated System (DRIS) into nutrient indexes and by Compositional Nutrient Diagnosis into centered log ratios (CND-clr). DRIS has some computational flaws such as using a dry matter index that is not a part as well as nutrient products (e.g. NxCa) instead of ratios. DRIS and CND-clr integrate all possible nutrient interactions without defining an ad hoc interactive model. They diagnose D components while D-1 could be diagnosed in the D-compositional Hilbert space. The isometric log ratio (ilr) coordinates overcome these problems using orthonormal binary nutrient partitions instead of dual ratios. In this study, it is presented a nutrient interactive model as well as computation methods for DRIS and CND-clr and CND-ilr coordinates (CND-ilr) using leaf analytical data from an experimental apple orchard in Southwestern Quebec, Canada. It was computed the Aitchison and Mahalanobis distances across ilr coordinates as measures of nutrient imbalance. The effect of changing nutrient concentrations on ilr coordinates are simulated to identify the ones contributing the most to nutrient imbalance.
Resumo:
This work was carried out to show the current situation of the temperate fruit crops in São Paulo state, Brazil, with an emphasis on grapes, peaches, apples, plums, nectarines and pears crops. Current economic data of crops, major growing regions, main cultivars produced, as well as the new technologies generated by research are presented. Regarding the grape crop, a decrease in the national production as well as in the major growing states was observed. The main grapes growing centers in São Paulo state are presented, highlighting its peculiarities regarding cultivars, cultural crop management and current researches. A trend has been observed toward increasing Niagara Rosada grape growing area rather than the fine table grape cultivars. It was also observed the adoption of cultural practices, aiming to increase productivity, to improve the fruits quality and to reduce manpower necessity. In terms of stone fruits, peaches are the most widely cultivated in São Paulo state, followed by plums and nectarines. Both for stone fruits crop and for apples and pears crops, statistics and comments are presented on the crops evolution as well as the current researches results and the requirements of these fruit crops in São Paulo state, Brazil.
Resumo:
Until 1994, only scarce research existed on these plants; however the worldwide interest in this novel fruit crop is evident, as numbers of pitaya-related publications have grown rapidly, especially during the past decade .There is a big confusion about both botanical and commercial names and there is a need to clear this point. Herein, we attempt to review existing knowledge on the taxonomy, breeding and other horticultural characteristics of this unique crop. This paper comments abou taxonomy,breeding,physiology and horticultura e chatera ristics,postsharvest and uses.
Resumo:
The polyphenol contents and antioxidant capacity of Brazilian red grape juices and wine vinegars were analyzed. Additionally, it was analyzed the human polyphenol absorption and acute effect in plasmatic oxidative metabolism biomarkers after juice ingestion. The organic Bordo grape juice (GBO) presented a higher level of trans-resveratrol, quercitin, rutin, gallic acid, caffeic acid and total flavonoids then other juices and vinegars as well as antioxidant capacity. The plasmatic polyphenol increased 27.2% after GBO juice ingestion. The results showed that juices and vinegars from Brazilian crops present similar chemical and functional properties described in studies performed in other countries.
Resumo:
A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.
Resumo:
The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning) of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances), the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature) and human interferences (cropping practices and control measures) are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of knowledge and understanding of the etiology and epidemiology of root rot, and its effects on the physiology of the whole plant, are discussed in relation to new research directions and development of better practices to manage the disease in hydroponic crops. Focus is on methods and technologies for tracking Pythium and root rot, and on developing, integrating, and optimizing treatments to suppress the pathogen in the root zone and progress of root rot.