37 resultados para circulating progenitor cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported that patients with progressive tuberculosis (TB) express abundant amounts of the antimicrobial peptides (AMPs) cathelicidin (LL-37) and human neutrophil peptide-1 (HNP-1) in circulating cells, whereas latent TB infected donors showed no differences when compared with purified protein derivative (PPD) and QuantiFERON®-TB Gold (QFT)-healthy individuals. The aim of this study was to determine whether LL-37 and HNP-1 production correlates with higher tuberculin skin test (TST) and QFT values in TB household contacts. Twenty-six TB household contact individuals between 26-58 years old TST and QFT positive with at last two years of latent TB infection were recruited. AMPs production by polymorphonuclear cells was determined by flow cytometry and correlation between TST and QFT values was analysed. Our results showed that there is a positive correlation between levels of HNP-1 and LL-37 production with reactivity to TST and/or QFT levels. This preliminary study suggests the potential use of the expression levels of these peptides as biomarkers for progression in latent infected individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group A human rotaviruses (HuRVA) are causative agents of acute gastroenteritis. Six viral structural proteins (VPs) and six nonstructural proteins (NSPs) are produced in RV-infected cells. NSP4 is a diarrhoea-inducing viral enterotoxin and NSP4 gene analysis revealed at least 15 (E1-E15) genotypes. This study analysed the NSP4 genetic diversity of HuRVA G2P[4] strains collected in the state of São Paulo (SP) from 1994 and 2006-2010 using reverse transcription-polymerase chain reaction, sequencing and phylogenetic analysis. Forty (97.6%) G2P[4] strains displayed genotype E2; one strain (2.4%) displayed genotype E1. These results are consistent with the proposed linkage between VP4/VP7 (G2P[4]) and the NSP4 (E2) genotype of HuRVA. NSP4 phylogenetic analysis showed distinct clusters, with grouping of most strains by their genotype and collection year, and most strains from SP were clustered together with strains from other Brazilian states. A deduced amino acid sequence alignment for E2 showed many variations in the C-terminal region, including the VP4-binding domain. Considering the ability of NSP4 to generate host immunity, monitoring NSP4 variations, along with those in the VP4 or VP7 protein, is important for evaluating the circulation and pathogenesis of RV. Finally, the presence of one G2P[4]E1 strain reinforces the idea that new genotype combinations emerge through reassortment and independent segregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism whereby the immune system avoids self-aggression is one of the central issues of Immunology. The discovery of natural autoantibodies, mainly of IgM isotype, and of idiotypic interactions between antibodies indicates that elements of the immune system interact with self constituents and with themselves. Results of studies with soluble antibodies have indicated that the pool of circulating IgM represents the end result of a highly selective process of B cells activation and differentiation by self proteins resulting in the formation of a network. The objective of the present work was to determine the frequency of self-reacting B cells in normal mice. We were able to detect B cells that recognize self proteins present in extracts of different organs in normal adult, 2-3-month old, BALB/c and C57BL/6 mice with an ELISA spot assay. About 1% of total IgM-secreting cells among small, LPS-stimulated spleen cells reacted with organ extracts, whereas among large spleen cells the frequency was 5- to 10-fold lower. Immunization induced an increase in the frequency of IgM-secreting cells. The present results provide cellular evidence for the results of studies done at the serological level. The physiological role of these self-recognizing cells, as well as their participation in autoimmune processes, remain to be established

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trials have demonstrated that high-dose escalation followed by autologous transplantation can promote better long-term survival as salvage treatment in malignant lymphomas. The aim of the present nonrandomized clinical trial was to demonstrate the role of high-dose cyclophosphamide (HDCY) in reducing tumor burden and also to determine the effectiveness of HDCY followed by etoposide (VP-16) and methotrexate (MTX) in Hodgkin's disease plus high-dose therapy with peripheral blood progenitor cell (PBPC) transplantation as salvage treatment. From 1998 to 2000, 33 patients with a median age of 33 years (13-65) affected by aggressive non-Hodgkin's lymphoma (NHL) (60.6%) or persistent or relapsed Hodgkin's disease (39.4%) were enrolled and treated using high dose escalation (HDCY + HDVP-16 plus HDMTX in Hodgkin's disease) followed by autologous PBPC transplantation. On an "intention to treat" basis, 33 patients with malignant lymphomas were evaluated. The overall median follow-up was 400 days (40-1233). Thirty-one patients underwent autografting and received a median of 6.19 x 10(6)/kg (1.07-29.3) CD34+ cells. Patients who were chemosensitive to HDCY (N = 22) and patients who were chemoresistant (N = 11) presented an overall survival of 96 and 15%, respectively (P<0.0001). Overall survival was 92% for chemosensitive patients and 0% for patients who were still chemoresistant before transplantation (P<0.0001). Toxicity-related mortality was 12% (four patients), related to HDCY in two cases and to transplant in the other two. HDCY + HDVP-16 plus HDMTX in only Hodgkin's disease followed by autologous PBPC proved to be effective and safe as salvage treatment for chemosensitive patients affected by aggressive NHL and Hodgkin's disease, with acceptable mortality rates related to sequential treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of highly active antiretroviral therapy (HAART) for patients infected with HIV has significantly prolonged the life expectancy and to some extent has restored a functional immune response. However, the premature introduction of HAART has led to a significant and alarming increase in cardiovascular complications, including myocardial infarction and the appearance of abnormal distribution of body fat seen as lipodystrophy. One key element in the development of ischemic coronary artery disease is the presence of circulating and tissue-fixed modified low density lipoprotein (mLDL) that contributes to the initiation and progression of arterial lesions and to the formation of foam cells. Even though not completely elucidated, the most likely mechanism involves mLDL in the inflammatory response and the induction of a specific immune response against mLDL. Circulating antibodies against mLDL can serve as an indirect marker of the presence of circulating and vessel-fixed mLDL. In the present study, we measured antibodies to mLDL and correlated them with immune status (i.e., number of CD4+ T cells) in 59 HIV patients and with the clinical manifestation of lipodystrophy in 10 patients. We observed a significant reduction in anti-mLDL antibody levels related both to lipodystrophy and to an immunocompromised state in HIV patients. We speculate that these antibodies may explain in part the rapid development of ischemic coronary artery disease in some patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell fate decisions are governed by a complex interplay between cell-autonomous signals and stimuli from the surrounding tissue. In vivo cells are connected to their neighbors and to the extracellular matrix forming a complex three-dimensional (3-D) microenvironment that is not reproduced in conventional in vitro systems. A large body of evidence indicates that mechanical tension applied to the cytoskeleton controls cell proliferation, differentiation and migration, suggesting that 3-D in vitro culture systems that mimic the in vivo situation would reveal biological subtleties. In hematopoietic tissues, the microenvironment plays a crucial role in stem and progenitor cell survival, differentiation, proliferation, and migration. In adults, hematopoiesis takes place inside the bone marrow cavity where hematopoietic cells are intimately associated with a specialized three 3-D scaffold of stromal cell surfaces and extracellular matrix that comprise specific niches. The relationship between hematopoietic cells and their niches is highly dynamic. Under steady-state conditions, hematopoietic cells migrate within the marrow cavity and circulate in the bloodstream. The mechanisms underlying hematopoietic stem/progenitor cell homing and mobilization have been studied in animal models, since conventional two-dimensional (2-D) bone marrow cell cultures do not reproduce the complex 3-D environment. In this review, we will highlight some of the mechanisms controlling hematopoietic cell migration and 3-D culture systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water deprivation and hypernatremia are major challenges for water and sodium homeostasis. Cellular integrity requires maintenance of water and sodium concentration within narrow limits. This regulation is obtained through engagement of multiple mechanisms and neural pathways that regulate the volume and composition of the extracellular fluid. The purpose of this short review is to summarize the literature on central neural mechanisms underlying cardiovascular, hormonal and autonomic responses to circulating volume changes, and some of the findings obtained in the last 12 years by our laboratory. We review data on neural pathways that start with afferents in the carotid body that project to medullary relays in the nucleus tractus solitarii and caudal ventrolateral medulla, which in turn project to the median preoptic nucleus in the forebrain. We also review data suggesting that noradrenergic A1 cells in the caudal ventrolateral medulla represent an essential link in neural pathways controlling extracellular fluid volume and renal sodium excretion. Finally, recent data from our laboratory suggest that these structures may also be involved in the beneficial effects of intravenous infusion of hypertonic saline on recovery from hemorrhagic shock.