281 resultados para chemical defense
Resumo:
Qualitative and quantitative analyses of the volatile constituents from resin of Protium heptaphyllum (Aubl.) Marchand subsp. ulei (Swat) Daly (PHU), and Protium heptaphyllum (Aubl.) Marchand subsp. heptaphyllum (PHH), Burseraceae were performed using GC-MS and GC-FID. The resins were collected around the city of Cruzeiro do Sul, state of Acre, Brazil. Essential oils from the two subspecies were extracted by hydrodistillation with a yield of 8.6% (PHU) and 11.3% (PHH); the main components were terpinolene (42.31%) and p-cymene (39.93%) for subspecies ulei (PHU) and heptaphyllum (PHH), respectively.
Resumo:
Three coumarins, 5-methoxypsoralene, xanthyletin, and (-)-marmesin, have been isolated from the ethanolic extract of the stem of the Amazonian plant Brosimum potabile. The structures were determined on the basis of NMR analyses and by comparison with spectroscopic data in the literature. The analysis of the hexane fractions by GC-MS in EIMS mode suggested the presence of (1-methylpentyl)-benzene; α,α-dimethyl-4-(1-methylethyl)-benzenemethanol; 1-methyl-3,5-bis(1-methylethyl)-benzene; urs-12-ene; chola-5,22-dien-3β-ol; cholesta-4,6-dien-3β-ol; sitosteryl 9(Z)-octadecenoate; cholesta-5,22-dien-3β-ol; cholesta-4,6,22-trien-3-one; and cholesta-4,22-dien-3-one. NMR data of other hexane fractions indicated the presence of 3β-acetoxy-lup-12,20(29)-diene; 3β-acetoxy-olean-12-ene; 3β-acetoxy-urs-12-ene; and adian-5-ene. All these compounds are first described in B. potabile.
Resumo:
Phytoplankton is important bioindicator of chemical and biological modifications of natural ecosystems. The objective of this study was to determine the total chemical composition of the phytoplankton of the Pará and Mocajuba estuaries on the eastern coast of the Amazon region in the Brazilian state of Pará. The chemical composition of the surface water, bottom sediments (total sample and bioavailable fraction), and the phytoplankton were determined by inductively coupled plasma optical emission spectrometry. Phytoplankton contained high concentrations of Ca, P, Mn, Fe, Zn, Al, Ba, and Pb. The phytoplankton of the Mocajuba estuary is rich in Fe (2,967-84,750 µg g-1), while those from the Pará is rich in Al (1,216-15,389 µgg-1), probably reflecting divergent anthropogenic inputs. Both samples indicated a high bioconcentration factor derived from both the water and the bioavailable fraction, reflecting the efficiency of these organisms in the concentration of metals.
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
In the Southern Pantanal, the hyacinth macaw (Anodorhynchus hyacinthinus), an endangered species, often chooses the manduvi tree (Sterculia apetala) as a nesting site, because of its physical properties. In addition, the chemical composition of the wood may also contribute to a nesting selection by the hyacinth macaws. The objective of this study was to determine the main chemical components of S. apetala bark for two seasons, and evaluate its fungicidal potential. Bark samples from S. apetala trees with and without nests of A. hyacinthinus were collected in January (wet season) and August (dry season) of 2012. The inhibition of mycelium growth (MGI) from tree samples with and without nests were assessed using a phytochemical analysis to evaluate their antifungal activity against Trichoderma sp. Phytochemical analysis confirmed the presence of phenolic compounds and flavonoids. In both seasons, samples obtained from nested trees had higher content of total phenols than those collected from non-nested trees. The average content of total flavonoids was higher in January for samples with nest and in August for samples without nest. All selected samples showed antifungal activity, and those with nest collected in August (peak of hyacinth macaw breeding) resulted in an MGI of 51.3%. Therefore, this percentage, related to the content of flavonoids and the presence of coumarins, may influence the reproductive success of hyacinth macaws and other species of birds, in this region. This is the first chemical study report with the stem bark of S. apetala.
Resumo:
The present work deal t wi th an experiment under field conditions and a laboratory test of soil incubation the objectives were as follows: a. to study effects on soybean grain product ion and leaf composition of increasing doses of potassium chloride applied into the soil through two methods of distribution; b. to observe chemical modifications in the soils incubated with increasing doses of potassium chloride; and, c. to correlate field effects with chemical alterations observed in the incubation test, The field experiment was carried out in a Red Latosol (Haplustox) with soybean cultivar UFV - 1. Potassium chloride was distributed through two methods: banded (5 cm below and 5 cm aside of the seed line) and broadcasted and plowed-down. Doses used were: 0; 50; 100 and 200 kg/ha of K2O. Foliar samples were taken at flowering stage. Incubation test were made in plastic bags with 2 kg of air dried fine soil, taken from the arable layer of the field experiment, with the following doses of KC1 p,a. : 0; 50; 100; 200; 400; 800; 1,600; 3.200; 6,400 and 12,800 kg/ha of K(2)0. In the conditions observed during the present work, results allowed the following conclusions: A response by soybean grain production for doses of potassium chloride, applied in both ways, banded or broadcasted, was not observed. Leaf analysis did not show treatment influence over the leaf contents for N, P, K, Ca, Mg, and CI, Potassium chloride salinity effects in both methods of distribution for all the tested closes were not observed.
Resumo:
One of the features of pneumococcus which has deserved the attention of investigators is the capsule. Since Pasteur, Chamberland and Roux (1881) several functions have been ascribed to it as well as peculiar properties. In the present paper, we take into consideration one only aspect of this problem; it is the relationship which there possibly may be between acidity of the culture medium and the power of capsule formation by pneumococcus. As it is known, this germ requires for its development 7.8 as an optimum pH, but maintains its biological activities down to 5.6. These variations do not take place without large alterations, particularly of the capsule, not only from the morphological but also from the chemical viewpoint. The diameter of the mucous envelopment of the pneumococcus decreases in proportion to the increase of acidity down to its complete extinction. This fact has been regarded by investigators as a biological feature inhe¬ring to the germ itself and as proceeding of self-defense. In an acid medium the existing capsule is destroyed and the germ does not produce it again; consequently, acidity inhibits the formation of the capsule. We tried to check how this phenomenon comes to pass and to elucidated it. As we know, the fundamental compound of the pneumococcus capsule is mucin. In the first place, we experimented the action of acidity on same in the following manner: Mucin extracted from bovine submaxillary gland is precipitated by HC1 at a determined concentration degree; the mucin dissolves again and precipi¬tates in function of this concentration. This property of mucin (solubility in acid medium) modifies a little the interpretation of the mechanism of disappearance of the capsule from the said germ in the culture medium. Indeed: The acidification of the medium consecutive to the growth of pneumococcus reduces the dimensions of the capsule until causing its com¬plete disappearance; but on transferring this strain to new optimum cultiva¬ting conditions the capsule appears again exhuberantly, at times as anteriorly, although with biased virulence. Linking these two facts we draw the following conclusions: Pneumo¬coccus does not lose its capacity of capsule formation in an acid medium; but mucin, whilst being produced, is entirely dissolved in this medium by the aid of acidity; we venture to state that, in spite of medium acidity, the capacity of capsule production is a constant feature of pneumococcus and that the disappearance of the capsule does not depend on the pneumococcus in itself when it produces smooth colonies, but on the chemical properties of mucin, mainly on its solubility in acid medium.
Resumo:
Neolignans, generated by oxydative dimerization of propenylphenol and/or allylphenol, undergo further modifying steps. These biosynthetic reactions, confirmed in vitro, include Cope, retro-Claisen and Claisen rearrangements. Additionally acid catalysis effects convertions of bicyclo [3.2.1] octanoid neolignans into hydrobenzofuranoid neolignans, or inversely of hydrobenzofuranoid neolignans into bicyclo [3.2.1] octanoid neolignans, of hydrobenzofuranoid neolignans into futoenone type neolignans, of tetrahydrofuran neolignans into aryltetralin neolignans, as well as modifications by Friedel - Crafts reactions and the transformation of aryltetralin neolignans into arylindanones by pinacoline - pinacolone type rearrangement.
Resumo:
Cancer development is a long-term multistep process which allows interventional measure before the clincial disease emerges. the detection of natural substances which can block the process of carcinogenesis is a important as the identification of anti-tumoral drugs since they might be used in chemoprevention of cancer in high-risk groups. In vivo rodent models of chemical caecinogenesis have been used to study plant-derived inhibitors of carcinofenesis such as indols, coumarins, isothiocyanates, flavones, phenols and allyl-sulfides. Since the standard in vivo rodent bioassay is prolonged and expensive, shorter reliable protocols are needed. Two in vivo medium-term protocols for evaluation of modifiers of carcinogenesis are presented, one related to liver and the other to bladder cancer. Both protocols use rats, last 8 and 36 weeks and are based on the two-step concept of carcinogenesis: initiation and promotion. The protocols use respectively the development of altered foci of hepatocytes expressing immunochistochemically the placental form of gluthation S-transferase and the appearence of pre-neoplastic urothelium and papillomas as the "end-points". the use of these protocols for detection of plantpderived inhibitors of carcinogenesis appear warranted.
Resumo:
Search of new activity substances starting from chemotherapeutic agents, continously appears in international literature. Perhaps this search has been done more frequently in the field of anti-tumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of supercomputers and emergence of computer net systems, willopen new avenues to rational drug design" (Portoghese, P. S. J. Med. Chem. 1989, 32, 1). Unknown pharmacological active compounds synthetized by plants can be found even without this eletronic devices, as tradicional medicine has pointed out in many contries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplasic drugs will be examined, particularly those done by Brazilian researches.
Resumo:
A systematic search for solasodine, an important staring material for the partial synthesis of steroidal hormones as well as other potentially bioactive constituents of various Solanum species of Brazil has been undertaken. Thus, the fruits of S. paludosum, S. asperum, S. sessiliforum and Solanum sp. were found to contain significant amounts of solasodine. The root bark of S. paludosum which showe durare like activity yelded tomatidenol and another yet unidentified alkaloid responsible for the biological activity. The fruits of S. asperum yelded a new spirosolane alkaloid, solaparnaine. The stem bark of S. pseudo-quina showed convulsive and exitatory activity from which (25S)-isosolafloridine was identified as the active principle. In addition, the latter alkaloid was also found to show antimicrobial activity.