48 resultados para cell wall genetics


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study evaluated the effects of modified atmosphere packaging on inhibition of the development of chilling injury symptoms in 'Douradão' peach after cold storage and the possible involvement of cell wall enzymes. Fruits were harvested at the middle stadium of ripening, packed in polypropylene trays and placed inside low density polyethylene (LDPE) bags (30, 50, 60 and 75 µm of thickness) with active modified atmosphere (10 kPa CO2 + 1.5 kPa O2, balance N2). The following treatments were tested: Control: peaches held in nonwrapped trays; MA30: LDPE film - 30 µm; MA50: LDPE film - 50 µm; MA60: LDPE film - 60 µm and MA75: LDPE film - 75 µm. Fruits were kept at 1±1ºC and 90±5% relative humidity (RH) for 28 days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25±1ºC and 90±5% RH for ripening. On the day of removal and after 4 days, peaches were evaluated for woolliness incidence, pectolytic enzymes activities. The respiratory rate and ethylene synthesis were monitored during 6 days of ripening. The results showed that MA50 and MA60 treatments had positive effect on the inhibition of the development of woolly texture and reduced pectin methylesterase activity on the ripe fruits, keeping good quality of 'Douradão' peach during 28 days of cold storage. The treatments Control, MA30 and MA75 showed higher woolliness incidence and did not present marketable conditions after 14 days of cold storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Yeast cell wall contains polymers glucan and mannan-protein that have received much attention with respect to their biological activities. Conventional isolation process involving treatments with hot alkali and acids cause degradation of these polymers. The aim of this paper was to study a low-degrading process for the isolation of glucan and mannan-protein from S. cerevisiae cell wall comprising physic and enzymatic treatments. Yeast cell glucan was obtained in a purity of 87.4% and a yield of 33.7%. The isolated mannan-protein presented antioxidant activity that was increased after thirty minutes of protease treatment. Antioxidant activity was determined by β-carotene/linoleate model system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mature leaves of Paepalanthus superbus exhibit intercellular protuberances between the inner periclinal walls of the epidermal and the parenchyma cells surface, as well as on the surface of the parenchyma mesophyll cells. These structures are mostly prominent around the parenchyma cells, forming a gel capsule-like structure. Histochemical tests with ruthenium red indicate the pectic nature of the intercellular deposits, with scattered lipidic inclusions as revealed by sudan IV and sudan black B. Ultrastructural analyses show a fibrillar matrix with scattered fimbriate and tubular structures, and a distinct margin delimited by a dense membrane-like structure. Our results suggest that the protuberances are derived from secretory activity, and are formed after the development of the intercellular spaces. For P. superbus this structure may represent an important cell wall specialisation, related with the adhesion and transport mechanisms between cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Galactomannans (GM) are storage cell wall polysaccharides present in endospermic seeds of legumes. They are thought to be storage polymers, since it has been observed for a few species (among them Sesbania virgata) that they are completely broken down after germination and their products are transferred to the growing embryo. We examined the effect of 10-4 M abscisic acid (ABA) on the degradation of galactomannan in isolated endosperms and intact seeds of S. virgata. We found that after seed germination the initial embryo growth was retarded. Ultrastructural analysis showed that the embryo is completely surrounded by an endosperm which displays very thick galactomannan-containing cell walls. Although an inhibitory effect has been observed on the increase of fresh mass of the embryo, the effect of ABA on the dry mass was weaker and transitory (from 48 to 96 h). Endosperm dry mass and galactomannan degradation were significantly inhibited and the activity of alpha-galactosidase was strongly affected. The addition of ABA before and/or after the start of mobilisation in intact seeds or isolated endosperms, showed that whereas addition before mobilisation did not affect dry mass decrease in intact seeds, it was strongly affected in isolated endosperms. On the other hand, whereas it affected embryo fresh mass increase in intact seeds, but not in isolated embryos, no significant effect was observed on dry mass. These results suggest that ABA affects galactomannan degradation and by doing so, prevents water absorption by the embryo, rather than affect its dry mass. As ABA has been detected in the endosperm of seeds of S. virgata, it is proposed that it probably acts as a modulator of galactomannan mobilisation and consequently synchronises it with early growth of the embryo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of monoclonal antibodies for specific pectic epitopes is an important tool in the study of the cell wall. Throughout the development of mucilage cells of Araucaria angustifolia (Bertol.) Kuntze, a gradient of distribution was observed in relation to the pectic de-esterification, as well as to the increase of galactan and arabinan epitope distribution, and to the reduction of arabinogalactans proteins (AGPs) epitope at maturity. AGP and methyl-esterified homogalacturonan (HGA) were present in the mucilage. Galactans and arabinans were also observed in the mucilage, though with weak labelling. Degradation of AGP in the maturity of mucilage cells, in cell wall, as well as in the secretion, could be involved in the programmed cell death (PCD). Different labellings found among parenchyma and mucilage cells suggested differences in the cell wall properties of the mucilage cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cotyledon mesophyll cell morphology and lipid and protein synthesis of T. grandiflorum, T. subincanum and T. bicolor were analyzed and compared with T. cacao. These species possess foliar cotyledons folded around the hypocotyl radicle axis, typical of Sterculiaceae. Fruit size, morphology and weight are very distinct amongst the four species and so are the respective seeds. The main axis of the T. grandiflorum and T. bicolor seeds measured about 30 mm, while T. subincanum and T. cacao seeds measured 17 mm and 26 mm respectively. The seed weights of T. grandiflorum, T. bicolor, T. subincanum and T. cacao were 11.6 g, 9.4 g, 2.1 g and 3.0 g, respectively. The cotyledon mesophylls of the four species contained mainly polysaccharides and lipid-protein reserve cells. Theobroma cacao, T. grandiflorum and T. subincanum were composed of greater than 50% lipids. For the four species, lipid globules gradually accumulated adjacent to the cell wall, and these globules measured from 1 to 3 µm. TEM showed low-density proteins inside the central vacuole of the young mesophyll cells of T. cacao. The protein reserves of the mature cells were densely scattered amongst the lipid bodies, and a few starch granules occurred together with the cotyledon mesophyll of the four species. Polyphenolic cells were found throughout the mesophyll cells or aligned with the respective vascular bundles. Immature cells demonstrated the capacity to synthesize all these reserves, but gradually the pre-determined cells produced mainly lipid-protein reserves. Besides the unique characteristics of the T. cacao products, the lipid-protein synthesis capacities of T. grandiflorum, T. subincanum and T. bicolor suggest various possibilities for new industrialized food, pharmaceutical and cosmetic products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)). Colleters are secretory structures formed by a parenchymatic axis with vascular bundles, bound by a layer of secretory palisade-like epidermis. Some studies regarding the structure of colleters have focused on secretory cells structure, but not distinguished the secretory and senescent phases. Generally, in mucilage-secreting cells such as colleters, the endoplasmic reticulum and Golgi apparatus are involved in secretion production and transport. In these study, colleters structure of Bathysa gymnocarpa K. Schum. and B. stipulata (Vell.) C. Presl. (Rubiaceae) were determined in two phases: a secretory phase and a senescence one. Samples were collected and processed by usual light and electron microscopy techniques. Studied colleters are constituted by an epidermal palisade layer and a central axis formed by parenchymatic cells with rare vascular traces. During the secretory phase, epidermal cells presented a dense cytoplasm, small vacuoles, enhanced rough and smooth endoplasmic reticulum, and a Golgi apparatus close to large vesicles. During the senescence phase epidermal cells presented a disorganized membrane system. No intact organelles or vesicles were observed. The outer cell wall exhibited similar layers to that observed during the secretory phase. The senescent phase is easily defined by the morphology of the colleters, but not well defined at subcellular level. Our research suggests that programmed cell death starts on secretory phase. However, more evidences are needed to evaluate the phenomena.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (α-xylosidase, β-galactosidase, β-glucosidase and xyloglucan endo-β-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, α-xilosidase seems to be more important than β-glucosidase and β-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ß-Glucans are soluble fibers with physiological functions, such as interference with absorption of sugars and reduction of serum lipid levels. The objective of the present study was to analyze the distribution of ß-glucans in different tissues of the African grass species Rhynchelytrum repens and also to evaluate their hypoglycemic activity. Leaf blades, sheaths, stems, and young leaves of R. repens were submitted to extraction with 4 M KOH. Analysis of the fractions revealed the presence of arabinose, glucose, xylose, and traces of rhamnose and galactose. The presence of ß-glucan in these fractions was confirmed by hydrolyzing the polymers with endo-ß-glucanase from Bacillus subtilis, followed by HPLC analysis of the characteristic oligosaccharides produced. The 4 M KOH fractions from different tissues were subjected to gel permeation chromatography on Sepharose 4B, with separation of polysaccharides with different degrees of polymerization, the highest molecular mass (above 2000 kDa) being found in young leaves. The molecular mass of the leaf blade polymers was similar (250 kDa) to that of maize coleoptile ß-glucan used for comparison. The 4 M KOH fraction injected into rats with streptozotocin-induced diabetes showed hypoglycemic activity, reducing blood sugar to normal levels for approximately 24 h. This performance was better than that obtained with pure ß-glucan from barley, which decreased blood sugar levels for about 4 h. These results suggest that the activity of ß-glucans from R. repens is responsible for the use of this plant extract as a hypoglycemic drug in folk medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

cDNA coding for two digestive lysozymes (MdL1 and MdL2) of the Musca domestica housefly was cloned and sequenced. MdL2 is a novel minor lysozyme, whereas MdL1 is the major lysozyme thus far purified from M. domestica midgut. MdL1 and MdL2 were expressed as recombinant proteins in Pichia pastoris, purified and characterized. The lytic activities of MdL1 and MdL2 upon Micrococcus lysodeikticus have an acidic pH optimum (4.8) at low ionic strength (μ = 0.02), which shifts towards an even more acidic value, pH 3.8, at a high ionic strength (μ = 0.2). However, the pH optimum of their activities upon 4-methylumbelliferyl N-acetylchitotrioside (4.9) is not affected by ionic strength. These results suggest that the acidic pH optimum is an intrinsic property of MdL1 and MdL2, whereas pH optimum shifts are an effect of the ionic strength on the negatively charged bacterial wall. MdL2 affinity for bacterial cell wall is lower than that of MdL1. Differences in isoelectric point (pI) indicate that MdL2 (pI = 6.7) is less positively charged than MdL1 (pI = 7.7) at their pH optima, which suggests that electrostatic interactions might be involved in substrate binding. In agreement with that finding, MdL1 and MdL2 affinities for bacterial cell wall decrease as ionic strength increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.