66 resultados para biopharmaceutical classification
Resumo:
Objective To analyze the production of scientific knowledge about the use of patients’ classification instruments in care and management practice in Brazil. Method Integrative literature review with databases search in: Latin American and Caribbean Literature on Health Sciences (LILACS), Medical Literature Analysis and Retrieval System on-line (MEDLINE), Cumulative Index to Nursing and Allied Health Literature (CINAHL) and SCOPUS, between January 2002 through December 2013. Results 1,194 studies were found, 31 met the inclusion criteria. We observed a higher number of studies in the category care plans and workload (n=15), followed by the category evaluation of psychometric properties (n=14). Conclusion Brazilian knowledge production has not yet investigated some purposes of using instruments for classifying patients in professional nursing practice. The identification of unexplored areas can guide future research on the topic.
Resumo:
OBJECTIVE To validate terms of nursing language especially for physical-motor rehabilitation and map them to the terms of ICNP® 2.0. METHOD A methodology research based on document analysis, with collection and analysis of terms from 1,425 records. RESULTS 825 terms were obtained after the methodological procedure, of which 226 had still not been included in the ICNP® 2.0. These terms were distributed as follows: 47 on the Focus axis; 15 on the Judgment axis; 31 on the Action axis; 25 on the Location axis; 102 on the Means axis; three on the Time axis; and three on the Client axis. All non-constant terms in ICNP® have been validated by experts, having reached an agreement index ≥0.80. CONCLUSION The ICNP® is applicable and used in nursing care for physical-motor rehabilitation.
Resumo:
AbstractOBJECTIVETo describe the pressure ulcer healing process in critically ill patients treated with conventional dressing therapy plus low-intensity laser therapy evaluated by the Pressure Ulcer Scale for Healing (PUSH) and the result of Wound Healing: Secondary Intention, according to the Nursing Outcomes Classification (NOC).METHODCase report study according to nursing process conducted with an Intensive Care Unit patient. Data were collected with an instrument containing the PUSH and the result of the NOC. In the analysis we used descriptive statistics, considering the scores obtained on the instrument.RESULTSA reduction in the size of lesions of 7cm to 1.5cm of length and 6cm to 1.1cm width, in addition to the increase of epithelial tissue and granulation, decreased secretion and odor.CONCLUSIONThere was improvement in the healing process of the lesion treated with adjuvant therapy and the use of NOC allowed a more detailed and accurate assessment than the PUSH.
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
The Brazilian System of Soil Classification (SiBCS) is a taxonomic system, open and in permanent construction, as new knowledge on Brazilian soils is obtained. The objective of this study was to characterize the chemical, physical, morphological, micro-morphological and mineralogical properties of four pedons of Oxisols in a highland toposequence in the upper Jequitinhonha Valley, emphasizing aspects of their genesis, classification and landscape development. The pedons occupy the following slope positions: summit - Red Oxisol (LV), mid slope (upper third) - Yellow-Red Oxisol (LVA), lower slope (middle third)- Yellow Oxisol (LA) and bottom of the valley (lowest third) - "Gray Oxisol" ("LAC"). These pedons were described and sampled for characterization in chemical and physical routine analyses. The total Fe, Al and Mn contents were determined by sulfuric attack and the Fe, Al and Mn oxides in dithionite-citrate-bicarbonate and oxalate extraction. The mineralogy of silicate clays was identified by X ray diffraction and the Fe oxides were detected by differential X ray diffraction. Total Ti, Ga and Zr contents were determined by X ray fluorescence spectrometry. The "LAC" is gray-colored and contains significant fragments of structure units in the form of a dense paste, characteristic of a gleysoil, in the horizons A and BA. All pedons are very clayey, dystrophic and have low contents of available P and a pH of around 5. The soil color was related to the Fe oxide content, which decreased along the slope. The decrease of crystalline and low- crystalline Fe along the slope confirmed the loss of Fe from the "LAC". Total Si increased along the slope and total Al remained constant. The clay fraction in all pedons was dominated by kaolinite and gibbsite. Hematite and goethite were identified in LV, low-intensity hematite and goethite in LVA, goethite in LA. In the "LAC", no hematite peaks and goethite were detected by differential X ray diffraction. The micro-morphology indicated prevalence of granular microstructure and porosity with complex stacking patterns.. The soil properties in the toposequence converged to a single soil class, the Oxisols, derived from the same source material. The landscape evolution and genesis of Oxisols of the highlands in the upper Jequitinhonha Valley are related to the evolution of the drainage system and the activity of excavating fauna.
Resumo:
Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.
Resumo:
In the upper Jequitinhonha valley, state of Minas Gerais, Brazi, there are large plane areas known as "chapadas", which are separated by areas dissected by tributaries of the Jequitinhonha and Araçuaí rivers. These dissected areas have a surface drainage system with tree, shrub, and grass vegetation, more commonly known as "veredas", i.e., palm swamps. The main purpose of this study was to characterize soil physical, chemical and morphological properties of a representative toposequence in the watershed of the Vereda Lagoa do Leandro, a swamp near Minas Novas, MG, on "chapadas", the highlands of the Alto Jequitinhonha region Different soil types are observed in the landscape: at the top - Typic Haplustox (LVA), in the middle slope - Xanthic Haplustox (LA), at the footslope - Xanthic Haplustox, gray color, here called "Gray Haplustox" ("LAC") and, at the bottom of the palm swamp - Typic Albaquult (GXbd). These soils were first morphologically described; samples of disturbed and undisturbed soils were collected from all horizons and subhorizons, to evaluate their essential physical and chemical properties, by means of standard determination of Fe, Al, Mn, Ti and Si oxides after sulfuric extraction. The contents of Fe, Al and Mn, extracted with dithionite-citrate-bicarbonate and oxalate treatments, were also determined. In the well-drained soils of the slope positions, the typical morphological, physical and chemical properties of Oxisols were found. The GXbd sample, from the bottom of the palm swamp, is grayish and has high texture gradient (B/A) and massive structure. The reduction of the proportion of crystalline iron compounds and the low crystallinity along the slope confirmed the loss of iron during pedogenesis, which is reflected in the current soil color. The Si and Al contents were lowest in the "LAC" soil. There was a decrease of the Fe2O3/TiO2 ratio downhill, indicating progressive drainage restriction along the toposequence. The genesis and all physical and chemical properties of the soils at the footslope and the bottom of the palm swamp of the "chapadas" of the Alto Jequitinhonha region are strongly influenced by the occurrence of ground water on the surface or near the surface all year long, at present and/or in the past. Total concentrations of iron oxides, Fe d and Fe o in soils of the toposequence studied are related to the past and/or present soil colors and drainage conditions.
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.
Resumo:
ABSTRACT Preservation of mangroves, a very significant ecosystem from a social, economic, and environmental viewpoint, requires knowledge on soil composition, genesis, morphology, and classification. These aspects are of paramount importance to understand the dynamics of sustainability and preservation of this natural resource. In this study mangrove soils in the Subaé river basin were described and classified and inorganic waste concentrations evaluated. Seven pedons of mangrove soil were chosen, five under fluvial influence and two under marine influence and analyzed for morphology. Samples of horizons and layers were collected for physical and chemical analyses, including heavy metals (Pb, Cd, Mn, Zn, and Fe). The moist soils were suboxidic, with Eh values below 350 mV. The pH level of the pedons under fluvial influence ranged from moderately acid to alkaline, while the pH in pedons under marine influence was around 7.0 throughout the profile. The concentration of cations in the sorting complex for all pedons, independent of fluvial or marine influence, indicated the following order: Na+>Mg2+>Ca2+>K+. Mangrove soils from the Subaé river basin under fluvial and marine influence had different morphological, physical, and chemical characteristics. The highest Pb and Cd concentrations were found in the pedons under fluvial influence, perhaps due to their closeness to the mining company Plumbum, while the concentrations in pedon P7 were lowest, due to greater distance from the factory. For containing at least one metal above the reference levels established by the National Oceanic and Atmospheric Administration (United States Environmental Protection Agency), the pedons were classified as potentially toxic. The soils were classified as Gleissolos Tiomórficos Órticos (sálicos) sódico neofluvissólico in according to the Brazilian Soil Classification System, indicating potential toxicity and very poor drainage, except for pedon P7, which was classified in the same subgroup as the others, but different in that the metal concentrations met acceptable standards.
Resumo:
The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.
Resumo:
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Resumo:
The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.