41 resultados para binding-protein 1
Resumo:
Galectin-1 belongs to an evolutionarily conserved family of animal ß-galactoside-binding proteins, which exert their functions by crosslinking the oligosaccharides of specific glycoconjugate ligands. During the past decade, attempts to identify the functional role of galectin-1 suggested participation in the regulation of the immune response. Only in the last few years has the molecular mechanism involved in these properties been clearly elucidated, revealing a critical role for galectin-1 as an alternative signal in the generation of T cell death. In the present study we will discuss the latest advances in galectin research in the context of the regulation of the immune response, not only at the central level but also at the periphery. Moreover, we will review the purification, biochemical properties and functional significance of a novel galectin-1-like protein from activated rat macrophages, whose expression is differentially regulated according to the activation state of the cells. The novel role of a carbohydrate-binding protein in the regulation of apoptosis is providing a breakthrough in galectin research and extending the interface between immunology, glycobiology and clinical medicine.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.
Resumo:
To investigate whether mice immunization with the recombinant form of a 14.7 KDa Schistosoma mansoni protein (rSm14) confers protection against a S. mansoni lethal challenge infection, rSm14-immunized mice were challenged with different cercarial burdens. A significant protection was detected in immunized mice challenged with 100 or 1,000 S. mansoni cercariae when compared with their controls (p< 0.004 and p< 0.01 respectively). Differently from previous report, none of the mice from the control group (not immunized and infected with 1000 cercariae) died before the 30th day post-infection. A direct correlation between the number of challenge cercariae and the precocity of mice death was found. IgM anti-rSm14 antibodies were significantly produced (p< 0.05) mainly in the groups of immunized mice infected with 500 or 1000 cercariae. IgG and IgA anti-rSm14 antibodies were not significantly detected. In Western immunoblots, all mice sera showed a specific antibody response with a 14.7 KDa antigen being reacted with particular intensity in sera from immunized mice. The results show that immunization with rSm14 reduced mice worm burden independently of the cercariae load of challenge infection. No correlation was found between serum antibodies and worm burden reduction. In relation to cercarial load and the rate and precocity of mice mortality a direct correlation was found.
Resumo:
Few studies have tried to characterize the efficacy of parenteral support of critically ill infants during short period of intensive care. We studied seventeen infants during five days of total parenteral hyperalimentation. Subsequently, according to the clinical conditions, the patients received nutritional support by parenteral, enteral route or both up to the 10th day. Evaluations were performed on the 1st, 5th, and 10th days. These included: clinical data (food intake and anthropometric measurements), haematological data (lymphocyte count), biochemical tests (albumin, transferrin, fibronectin, prealbumin, retinol-binding protein) and hormone assays (cortisol, insulin, glucagon). Anthropometric measurements revealed no significant difference between the first and second evaluations. Serum albumin and transferrin did not change significantly, but mean values of fibronectin (8.9 to 16 mg/dL), prealbumin (7.7 to 18 mg/dL), and retinol-binding protein (2.4 to 3.7 mg/dL) increased significantly (p < 0.05) from the 1st to the 10th day. The hormonal study showed no difference for insulin, glucagon, and cortisol when the three evaluations were compared. The mean value of the glucose/insulin ratio was of 25.7 in the 1st day and 15.5 in the 5th day, revealing a transitory supression of this hormone. Cortisol showed values above normal in the beginning of the study. We conclude that the anthropometric parameters were not useful due to the short time of the study; serum proteins, fibronectin, prealbumin, and retinol-binding protein were very sensitive indicators of nutritional status, and an elevated glucose/insulin ratio, associated with a slight tendency for increased cortisol levels suggest hypercatabolic state. The critically ill patient can benefit from an early metabolic support.
Resumo:
Merozoite surface protein-1 (MSP-1, also referred to as P195, PMMSA or MSA 1) is one of the most studied of all malaria proteins. The proteins. The protein is found in all malaria species investigated and structural studies on the gene indicate that parts of the molecule are well-conserved. Studies on Plasmodium falciparum have shown that the protein is in a processed form on the merozoite surface, a result of proteolytic cleavage of the large percursor molecule. Recent studies have identified some of these cleavage sites. During invasion of the new red cell most of the MSP1 molecule is shed from the parasite surface except for a small C-terminal fragment which can be detected in ring stages. Analysis of the structure of this fragment suggests that it contains two growth factor-like domains that may have a functional role.
Resumo:
The interaction of Schistosoma mansoni with its host's immune system is largely affected by multiple specific and non-specific evasion mechanisms employed by the parasite to reduce the host's immune reactivity. Only little is known about these mechanisms on the molecular level. The four molecules described below are intrinsic parasitic proteins recently identified and studied in our laboratory. 1. m28-A 28kDa membrane serine protease. m28 cleaves iC3b and can thus restrict attack by effector cells utilizing complement receptors (especially CR3). Treatment with protease inhibitors potentiates killing of schistosomula by complement plus neutrophils. 2. Smpi56-A 56kDa serine protease inhibitor. Smpi56 binds covalently to m28 and to neutrophil's elastase and blocks their proteolytic activity. 3. P70-A 70kDa C3b binding protein. The postulated activity of P70 includes binding to C3b and blocking of complement activation of the C3 step. 4. SCIP-1-A 94kDa schistosome complement inhibitor. SCIP-1 shows antigenic and functional similarities to the human 18kDa complement inhibitor CD59. Like CD59, SCIP-1 binds to C8 and C9 and blocks formation of the complement membrane attack complex. Antibodies directed to human CD59 bind to schistosomula and potentiate their killing by complement. The structure and function of these four proteins as well as their capacity to induce protection from infection with S. mansoni are under investigation.
Resumo:
Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
The zinc finger motifs (Cys2His2) are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.
Resumo:
Sm14 was the first fatty acid-binding protein homologue identified in helminths. Thereafter, members of the same family were identified in several helminth species, with high aminoacid sequence homology between them. In addition, immune crossprotection was also reported against Fasciola hepatica infection, in animals previously immunized with the Schistosoma mansoni vaccine candidate, r-Sm14. In the present study, data on preliminary sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis of nine different helminth extracts focusing the identification of Sm14 related proteins, is reported. Out of these, three extracts - Ascaris suum (males and females), Echinostoma paraensei, and Taenia saginata - presented components that comigrated with Sm14 in SDS-PAGE, and that were recognized by anti-rSm14 policlonal serum, in Western blotting tests.