55 resultados para beta-cell growth
Resumo:
In order to analyze the different parameters used in the interpretation of C-peptide response in a functional test, we compared a group of 26 type 1 diabetics aged 21.1 ± 8.2 years, with a diabetes duration of 7.9 ± 6.7 months, with a group of 24 non-diabetic subjects aged 25.0 ± 4.4 years. A standard mixed meal of 317 kcal was used as a stimulus. Blood sampling for C-peptide determinations was performed at regular intervals. Although all the studied C-peptide variables were significantly lower in the diabetic group (P<0.0001), some overlapping of parameters was observed between the two groups. The highest degree of overlapping was found for basal value (BV) (30.8%) and percent increase (42.31%), and the lowest for incremental area, absolute increase, peak value (PV) (3.8%), and total area (7.7%) (c2 = 31.6, P<0.0001). We did not observe a definite pattern in the time of maximum response among the 21 diabetics who showed an increase in C-peptide levels after the stimulus. In this group, however, there was a highly significant number of late responses (120 min) (c2 = 5.7, P<0.002). Although BV showed a significant correlation with PV (rS = 0.95, P<0.0001), the basal levels of C-peptide did not differentiate the groups with and without response to the stimulus. We conclude that the diabetic group studied showed delayed and reduced C-peptide responses, and that the functional test can be an important tool for the evaluation of residual ß cell function.
Resumo:
Prostaglandins are natural fatty acid derivatives with diverse physiological effects, including immune function and the control of cell growth. While the action of prostaglandins in the induction of stress proteins in vertebrate cells is well documented, their functions in invertebrate cells have been poorly investigated. The purpose of the present study was to investigate the effect of prostaglandin A1 (PGA1; 0.25, 1.25 and 12.5 µg/ml) on protein synthesis during the growth of Aedes albopictus cells. We found that PGA1 stimulates the synthesis of several polypeptides with molecular masses of 87, 80, 70, 57, 29, 27 and 23 kDa in Aedes albopictus cells. When the proteins induced by PGA1 and those induced by heat treatment were compared by polyacrylamide gel electrophoresis, PGA1 was found to induce the stress proteins. The HSP70 family and the low-molecular weight polypeptides (29 and 27 kDa, respectively) were induced by PGA1 in the lag phase. We also observed that PGA1 is able to induce a 23-kDa polypeptide independently of the growth phase of the cell
Resumo:
Galectins are a family of evolutionarily conserved animal lectins, widely distributed from lower invertebrates to mammals. They share sequence and structure similarities in the carbohydrate recognition domain and specificity for polylactosamine-enriched glycoconjugates. In the last few years significant experimental data have been accumulated concerning their participation in different biological processes requiring carbohydrate recognition such as cell adhesion, cell growth regulation, inflammation, immunomodulation, apoptosis and metastasis. In the present review we will discuss some exciting questions and advances in galectin research, highlighting the significance of these proteins in immunological processes and their implications in biomedical research, disease diagnosis and clinical intervention. Designing novel therapeutic strategies based on carbohydrate recognition will provide answers for the treatment of autoimmune disorders, inflammatory processes, allergic reactions and tumor spreading.
Resumo:
Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.
Resumo:
The distribution and structure of heparan sulfate and heparin are briefly reviewed. Heparan sulfate is a ubiquitous compound of animal cells whose structure has been maintained throughout evolution, showing an enormous variability regarding the relative amounts of its disaccharide units. Heparin, on the other hand, is present only in a few tissues and species of the animal kingdom and in the form of granules inside organelles in the cytoplasm of special cells. Thus, the distribution as well as the main structural features of the molecule, including its main disaccharide unit, have been maintained through evolution. These and other studies led to the proposal that heparan sulfate may be involved in the cell-cell recognition phenomena and control of cell growth, whereas heparin may be involved in defense mechanisms against bacteria and other foreign materials. All indications obtained thus far suggest that these molecules perform the same functions in vertebrates and invertebrates.
Resumo:
TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.
Resumo:
Gap junctions are clusters of intercellular channels directly connecting the cytoplasm of adjacent cells. These channels are formed by proteins named connexins and are present in all metazoan organisms where they serve diverse functions ranging from control of cell growth and differentiation to electric conduction in excitable tissues. In this overview we describe the presence of connexins in the cardiovascular and lympho-hematopoietic systems giving the reader a summary of the topics to be covered throughout this edition and a historical perspective of the discovery of gap junctions in the immune system.
Resumo:
In the present study we investigated the effect of salt intake on myenteric neuron size of the colon of adult male Wistar rats. The animals were placed on either a high-salt (HS; 8%; 12 animals) or a low-salt diet (LS; 0.15%; 12 animals) for 15 or 52 weeks and blood pressure was measured. The sizes of myenteric neurons of the distal colon from both groups were measured. No difference in neuron size was observed between the HS and LS groups after 15 weeks. After 52 weeks on HS, neuron size was increased (P<0.005) when compared with the LS group. The rats also presented hypertension, which was significantly different at 52 weeks (142 ± 11 vs 119 ± 7 mmHg). These results suggest that a long time on an HS diet can significantly increase myenteric nerve cell size.
Resumo:
Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02), to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003), and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02). In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02). A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.
Resumo:
Angiotensin II (Ang II)* is a multifunctional hormone that influences the function of cardiovascular cells through a complex series of intracellular signaling events initiated by the interaction of Ang II with AT1 and AT2 receptors. AT1 receptor activation leads to cell growth, vascular contraction, inflammatory responses and salt and water retention, whereas AT2 receptors induce apoptosis, vasodilation and natriuresis. These effects are mediated via complex, interacting signaling pathways involving stimulation of PLC and Ca2+ mobilization; activation of PLD, PLA2, PKC, MAP kinases and NAD(P)H oxidase, and stimulation of gene transcription. In addition, Ang II activates many intracellular tyrosine kinases that play a role in growth signaling and inflammation, such as Src, Pyk2, p130Cas, FAK and JAK/STAT. These events may be direct or indirect via transactivation of tyrosine kinase receptors, including PDGFR, EGFR and IGFR. Ang II induces a multitude of actions in various tissues, and the signaling events following occupancy and activation of Ang receptors are tightly controlled and extremely complex. Alterations of these highly regulated signaling pathways may be pivotal in structural and functional abnormalities that underlie pathological processes in cardiovascular diseases such as cardiac hypertrophy, hypertension and atherosclerosis.
Resumo:
The objective of the present study was to determine the effects of retinoic acid on the growth of the mouse mammary cells HC11 and HC11ras, which are a model for in vitro breast cancer progression. The expression of the two classes (RARs and RXRs) of retinoic acid receptor mRNAs was determined by Northern blot analysis. Receptor functional integrity was determined by testing whether RAR ß mRNA could be induced by retinoic acid. The effects of a 72-h exposure to 50 µM 13-cis retinoic acid on HC11 and HC11ras cell proliferation and HC11 cell differentiation were investigated by flow cytometric cell cycle analysis, and by determination of ß-casein mRNA expression, respectively. The possibility that retinoic acid would induce the expression of the vitamin D receptor and synergize with vitamin D, a known inhibitor of HC11 cell growth, was also investigated. HC11 cells expressed higher mRNA levels of both RAR a and RAR g when compared to HC11ras cells. In contrast, RAR ß, as well as RXR a, ß and g expression was low in both HC11 and HC11ras cells. In addition, RAR ß mRNA was induced by retinoic acid treatment in both cells. In spite of these observations, no effects were seen on cell proliferation or differentiation upon exposure to retinoic acid. Neither vitamin D receptor induction nor synergy with vitamin D on growth inhibition was observed. We conclude that the RAR expression profile could be related to the transformed state in HC11ras cells and that the retinoic acid resistance observed merits further investigation.
Resumo:
Estrogen involvement in breast cancer has been established; however, the association between breast cancer and thyroid diseases is controversial. Estrogen-like effects of thyroid hormone on breast cancer cell growth in culture have been reported. The objective of the present study was to determine the profile of thyroid hormones in breast cancer patients. Serum aliquots from 26 patients with breast cancer ranging in age from 30 to 85 years and age-matched normal controls (N = 22) were analyzed for free triiodothyronine (T3F), free thyroxine (T4F), thyroid-stimulating hormone (TSH), antiperoxidase antibody (TPO), and estradiol (E2). Estrogen receptor ß (ERß) was determined in tumor tissues by immunohistochemistry. Thyroid disease incidence was higher in patients than in controls (58 vs 18%, P < 0.05). Subclinical hyperthyroidism was the most frequent disorder in patients (31%); hypothyroidism (8%) and positive anti-TPO antibodies (19%) were also found. Subclinical hypothyroidism was the only dysfunction (18%) found in controls. Hyperthyroidism was associated with postmenopausal patients, as shown by significantly higher mean T3 and T4 values and lower TSH levels in this group of breast cancer patients than in controls. The majority of positive ERß tumors were clustered in the postmenopausal patients and all cases presenting subclinical hyperthyroidism in this subgroup concomitantly exhibited Erß-positive tumors. Subclinical hyperthyroidism was present in only one of 6 premenopausal patients. We show here that postmenopausal breast cancer patients have a significantly increased thyroid hormone/E2 ratio (P < 0.05), suggesting a possible tumor growth-promoting effect caused by this misbalance.
Resumo:
CDKN2A has been implicated as a melanoma susceptibility gene in some kindreds with a family history of this disease. Mutations in CDKN2A may produce an imbalance between functional p16ink4a and cyclin D causing abnormal cell growth. We searched for germline mutations in this gene in 22 patients with clinical criteria of hereditary cancer (early onset, presence of multiple primary melanoma or 1 or more first- or second-degree relatives affected) by secondary structural content prediction, a mutation scanning method that relies on the propensity for single-strand DNA to take on a three-dimensional structure that is highly sequence dependent, and sequencing the samples with alterations in the electrophoretic mobility. The prevalence of CDKN2A mutation in our study was 4.5% (1/22) and there was a correlation between family history and probability of mutation detection. We found the P48T mutation in 1 patient with 2 melanoma-affected relatives. The patient descends from Italian families and this mutation has been reported previously only in Italian families in two independent studies. This leads us to suggest the presence of a mutational "hotspot" within this gene or a founder mutation. We also detected a high prevalence (59.1%) of polymorphisms, mainly alleles 500 C/G (7/31.8%) or 540 C/T (6/27.3%), in the 3' untranslated region of exon 3. This result reinforces the idea that these rare polymorphic alleles have been significantly associated with the risk of developing melanoma.
Resumo:
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles by targeting mRNAs for cleavage or translational repression. miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis, suggesting their association with cancer. We determined the miRNA expression profile of chronic and acute lymphocytic leukemias (CLL and ALL) using the TaqMan® MicroRNA Assays Human Panel (Applied Biosystems). Pooled leukemia samples were compared to pooled CD19+ samples from healthy individuals (calibrator) by the 2-DDCt method. Total RNA input was normalized based on the Ct values obtained for hsa-miR-30b. The five most highly expressed miRNAs were miR-128b, miR-204, miR-218, miR-331, and miR-181b-1 in ALL, and miR-331, miR-29a, miR-195, miR-34a, and miR-29c in CLL. To our knowledge, this is the first report associating miR-128b, miR-204 and miR-331 to hematological malignancies. The miR-17-92 cluster was also found to be up-regulated in ALL, as previously reported for some types of lymphomas. The differences observed in gene expression levels were validated for miR-331 and miR-128b in ALL and CD19+ samples. These miRNAs were up-regulated in ALL, in agreement with our initial results. A brief target analysis was performed for miR-331. One of its putative targets, SOCS1, promotes STAT activation, which is a known mediator of cell proliferation and survival, suggesting the possibility of an association between miR-331 and these processes. This initial screening provided information on miRNA differentially expressed in normal and malignant B-cells that could suggest the potential roles of these miRNAs in hematopoiesis and leukemogenesis.
Resumo:
Oxygen therapy is essential for the treatment of some neonatal critical care conditions but its extrapulmonary effects have not been adequately investigated. We therefore studied the effects of various oxygen concentrations on intestinal epithelial cell function. In order to assess the effects of hyperoxia on the intestinal immunological barrier, we studied two physiological changes in neonatal rats exposed to hyperoxia: the change in intestinal IgA secretory component (SC, an important component of SIgA) and changes in intestinal epithelial cells. Immunohistochemistry and Western blot were used to detect changes in the intestinal tissue SC of neonatal rats. To detect intestinal epithelial cell growth, cells were counted, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Giemsa staining were used to assess cell survival. Immunohistochemistry was used to determine SC expression. The expression of intestinal SC in neonatal rats under hyperoxic conditions was notably increased compared with rats inhaling room air (P < 0.01). In vitro, 40% O2 was beneficial for cell growth. However, 60% O2 and 90% O2 induced rapid cell death. Also, 40% O2 induced expression of SC by intestinal epithelial cells, whereas 60% O2did not; however, 90% O2 limited the ability of intestinal epithelial cells to express SC. In vivo and in vitro, moderate hyperoxia brought about increases in intestinal SC. This would be expected to bring about an increase in intestinal SIgA. High levels of SC and SIgA would serve to benefit hyperoxia-exposed individuals by helping to maintain optimal conditions in the intestinal tract.